ZDNet至顶网服务器频道 10月21日 编译:IBM公司周一称,IBM将支付15亿美元给Globalfoundries,就此脱手旗下亏损的芯片部。IBM着手处理所面临严重的财务困境,此举乃IBM时下摆脱旗下无利可图业务的一步棋。
作为提出的交易的一部分,Globalfoundries同意在接下来的10年提供IBM处理器,其中包括IBM的Power芯片。几个月以来一直有传言指IBM在找买主脱手旗下的芯片制造业务,据说此业务每年的损失不下15亿美元。
交易揭露后,接着IBM就公布了令人失望的第三季度业绩,该季度销售额为224亿美元,同比下降4%。IBM还重将自己的5年盈利目标定位为至2015年每股盈利20美元。IBM股价现为169美元,下跌7%,即是跌13.16美元。
IBM公司首席执行官Ginni Rometty在一份声明中表示,“我们对公司的业绩很失望。我们注意到客户的购买行为在9月份明显放缓。我们掌握的资料表明,我们的行业正以前所未有的速度迅速改变。”
位于美国纽约州Armonk的IBM公司称,出售旗下的芯片制造业务能让公司专注于其他更有利可图的云计算、大数据分析和软件的机遇。
有渠道合作伙伴表示,IBM不景气的Power处理器业务需要一点刺激,卖掉芯片制造业务是压低昂贵芯片的价格的最佳选择,以吸引新客户至Power平台。渠道合作伙伴表示,IBM的Power处理器需要一个生命线,最新的英特尔至强处理器以及来自诸如ARM服务器的威胁为Power服务器平台带来严峻挑战。
IBM系统和技术集团和整合供应链高级副总裁Tom Rosamilia在一份书面声明中表示,“今天发布的收购消息——Globalfoundries计划收购IBM全球商业半导体技术业务——是IBM再改造过程的另一步。”
Rosamilia表示,IBM再改造涵括出售旗下的低利润业务,包括以23亿美元将旗下的x86服务器和个人电脑业务卖给联想。依赖Globalfoundries能让该芯片制造商“通过大批量半导体制造进行创新,经济规模大了可以加强大批量半导体制造业务。”
Moor Insights and Strategy的总裁兼首席分析师Patrick Moorhead告诉记者,八月份进行讨论时提到,IBM应该“抛开对IBM业务的发展非关键的东西”。多数芯片厂商时下都没有自己的芯片工场。这样做有助于IBM降低成本。
IBM的Power业务一直以来都处艰难经营的状态。据分析,其市场份额慢慢陷入低迷,原因是行业发生巨大变化,服务器架构全方位拥抱AMD、ASIC、ARM架构,当然还有英特尔的x86架构。
位于美国佛罗里达州的Champion Solutions Group的Boca Raton总裁Chris Pyle八月时告诉记者,“如果IBM不造自己的芯片,我不太确定会有什么区别。”
Pyle表示,“IBM公司几年前就卖掉了旗下的磁盘驱动器存储业务。有没有阻止我出售数亿美元的标有IBM标志的存储设备?没有。没有客户问我,‘那谁,这里面的东西是谁造的?’“
Pyle指出,他注意到IBM公司面临激烈竞争,x86对手有诸如AMD和英特尔一类的商家,他们在拉拢IBM的Power客户,想吸引IBM的Power客户将服务器架构建造在更便宜的商品x86架构上。
Globalfoundries是一家阿联酋国的公司,也是世界第二大芯片制造商,在新加坡有6个工场,在德国有一个工场,并且正在美国纽约州马耳他建设一个100亿美元的工场。
作为该交易的一部分,Globalfoundries将收购并经营现有的IBM半导体制造设施(位于美国纽约East Fishkill和佛蒙特州Essex Junction)。IBM表示,5000多名IBM员工将随这笔交易转移到Globalfoundries的半导体制造工厂的门下。
IBM于周一上午10点举行记者招待会,谈第三季度的销售和业绩。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。