ZDNet至顶网服务器频道 10月08日 新闻消息:智能和互联如今是科技产业的热点“名词”,很多专家都认为智能语音识别技术是未来10年间信息技术领域十大重要的科技发展技术之一,只有在电影中才有的、拥有语言天赋的机器将在不久的未来变成现实,智能语音技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。
智能语音目前主要依靠深度学习的技术实现,作为机器学习的一个重要分支,深度学习在于建立、模拟人脑进行分析学习的神经网络,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测,以达到具有人类一样的思考能力。目前,Facebook、Google、IBM、苹果、微软、百度、科大讯飞等均在此方面做了多种尝试。
深度学习技术有很多支撑的计算机算法,而目前最常用的是DNN算法,它能比较好地模拟人脑神经元多层深度传递的过程,解决智能语音中的复杂问题。然而,要模拟人脑绝非易事,人脑的计算能耗比是世界上最快的超级计算机天河2号的200万倍,众所周知,人类大脑大致有1000亿神经元,每个神经元有大约5000个神经突触。要使机器无限接近人类的思考能力意味着要模拟出更多的神经元和神经突触,这就会带来巨大的计算挑战。
迎难而上,某公司宣布要初步实现人类思考能力
即使世界IT巨头都无法彻底解决这一问题,但是某公司依旧宣布要实现基于类人神经网络的认知智能引擎,预期成果是实现世界上第一个中文认知智能计算引擎。目前,该公司已经集结了在认知智能领域最强研究团队,将在知识图谱构建与推理、人工神经网络模拟、人脑原理分析模拟几个方向展开研究。为了抢占国内智能语音市场先机,某公司计划将模拟人脑神经元的1/10,,以期让该公司的智能语音设备拥有初步的人类思考能力。
巧妇能为无米之炊,浪潮巧用GPU实现性能腾飞
要实现人脑神经元的1/10的深度模拟,这也就意味着该公司需要非常高计算性能的高性能计算集群。然而天河二号只有一部,如何设计一套占地面积小、计算性能高、又绿色节能的高性能计算集群成为该公司面临的问题。
针对这一问题,浪潮和该公司合作,利用GPU加速技术为该公司设计构建了一套GPU集群,双方联合设计了针对DNN算法特点的GPU集群并行计算框架,采用了每个计算节点配置双路CPU和4块NVIDIA Tesla K20m GPU,以及一块HCA卡的方案,通过GPU提高计算能力、通过IB网络提速节点之间的通信速度,最终完成GPU集群版的DNN并行算法,大幅减低了DNN的计算时间,从而为该公司下一步的智能语音计划提供助力。
作为中国异构高性能计算技术的领先者,浪潮一直致力于推动GPU和MIC的应用发展和人才培养,推动异构技术的产业生态环境建设。据了解,浪潮已经分别与英特尔和英伟达成立联合并行计算实验室,合作开发优化基于MIC和GPU的并行应用。浪潮-英特尔中国并行计算联合实验室首席工程师张清介绍:“浪潮目前已经建立了一套非常完善的高性能计算集群解决方案,将不仅为用户提供好用的高性能计算集群,还会针对每一个用户的应用特点量身定制集群解决方案,这也就说明未来浪潮将跟用户在应用测试、集群搭建、加速优化等各方面展开合作,把用户的需求看作是浪潮设计构建集群的根本要求。”
好文章,需要你的鼓励
随着数字化时代的到来,网络安全威胁呈指数级增长。勒索软件、AI驱动的网络攻击和物联网设备漏洞成为主要威胁。企业需要建立全面的风险管理策略,包括风险评估、安全措施实施和持续监控。新兴技术如人工智能、区块链和量子计算为网络安全带来新机遇。组织应重视员工培训、供应链安全、数据治理和事件响应能力建设。
滑铁卢大学研究团队开发出ScholarCopilot,一个革命性的AI学术写作助手。该系统突破传统"先检索后生成"模式,实现写作过程中的动态文献检索和精确引用。基于50万篇arXiv论文训练,引用准确率达40.1%,大幅超越现有方法。在人类专家评估中,引用质量获100%好评,整体表现优于ChatGPT。这项创新为AI辅助学术写作开辟新道路。
AWS Amazon Bedrock负责人Atul Deo正致力于让人工智能软件变得更便宜和更智能。他在12月re:Invent大会前只有六个月时间来证明这一目标的可行性。Deo表示AI领域发展速度前所未有,模型每几周就会改进,但客户只有在经济效益合理时才会部署。为此,AWS推出了提示缓存、智能路由、批处理模式等功能来降低推理成本,同时开发能执行多步骤任务的自主代理软件,将AI应用从聊天机器人转向实际业务流程自动化。
哥伦比亚大学研究团队发布NodeRAG技术,通过异构图结构革新智能问答系统。该方法将文档信息分解为7种节点类型,采用双重搜索机制,在多个权威测试中准确率达89.5%,检索效率提升50%以上,为智能信息检索技术带来重大突破。