IBM的Spyre加速器将于本月底正式发布,为其企业级硬件提供AI能力提升,包括z17大型机、LinuxONE 5和Power11系统。
IBM将Spyre描述为专门构建用于处理AI处理需求的加速器,将于10月28日面向IBM z17和LinuxONE 5系统正式发布,12月初面向Power11服务器发布。
IBM Spyre加速器
该硬件在今年早些时候与z17一同发布,z17是IBM最新的大型机产品。它是基于定制芯片的PCIe卡,配备32个独立加速器核心,据了解其架构类似于嵌入在为z17提供动力的Telum II处理器中的AI加速器硬件。
其设计目的是让AI处理能够扩展以满足客户对IBM企业系统的任何需求,这些需求通常包括对金融交易的欺诈检测检查,但生成式AI和大语言模型现在也可能成为工作负载组合中的一个特色。
因此,可以在IBM Z或LinuxONE系统中配置多达48张Spyre卡的集群,或在Power系统中配置多达16张卡。
IBM基础设施首席运营官Barry Baker表示:"我们的关键优先事项之一是推进基础设施以满足新兴AI工作负载的需求。通过Spyre加速器,我们正在扩展系统功能以支持多模型AI,包括生成式和智能体AI。这一创新使客户能够以不妥协的安全性、弹性和效率扩展其AI支持的关键任务工作负载,同时释放其企业数据的价值。"
多模型(非多模态)是指使用多个模型来提高准确性并减少假阳性,当执行推理工作时。
IBM在z17发布时声称,它看到了一个新兴趋势,即结合预测性AI和大语言模型的优势来提取新特征或新见解,以获得更好或更准确的结果。
Gartner基础设施和运营组管理副总裁Mike Chuba当时告诉我们,IBM在理解和支持其大型机客户需求方面投入了更多努力。
"IBM的研发工作现在专注于新硬件如何直接解决客户面临的挑战。对AI的关注,以及他们在z16上引入的专用加速器和这一代产品中即将推出的涡轮增压版本2,直接解决了例如在交易点进行欺诈检测的挑战。"
9月底,IBM还发布了z/OS 3.2,这是其大型机操作系统的最新版本。这为z17中的AI加速器技术提供了支持,还具有使z/OS数据在混合云和AI环境中无需依赖提取-转换-加载(ETL)过程即可访问的功能。
IBM此前表示,此版本将添加对现代数据访问方法和NoSQL数据库的支持,以允许AI利用更广泛的企业数据集来应用预测性业务洞察。
其他可以从Spyre加速器中受益的系统包括最新的LinuxONE型号,它由与z17相同的Telum II处理器驱动,但仅运行Linux;以及Power11系统如Power E1180,可配置多达256个核心。
Q&A
Q1:IBM Spyre加速器是什么?有什么用途?
A:IBM Spyre加速器是专门为处理AI需求而构建的硬件加速器,基于配备32个独立加速器核心的定制芯片PCIe卡。它主要用于为IBM的企业级系统提供AI处理能力,包括欺诈检测、生成式AI和大语言模型处理等工作负载。
Q2:Spyre加速器支持哪些IBM系统?何时发布?
A:Spyre加速器支持IBM z17大型机、LinuxONE 5和Power11系统。对于z17和LinuxONE 5系统,将于10月28日正式发布;对于Power11服务器,将在12月初发布。
Q3:Spyre加速器可以配置多少张卡?
A:根据不同系统有不同配置:在IBM Z或LinuxONE系统中可以配置多达48张Spyre卡的集群,而在Power系统中可以配置多达16张卡,以满足客户对AI处理能力的扩展需求。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。