边缘计算——在更靠近终端用户而非集中式数据中心的地方进行运算的实践——多年来一直是IT领域的热门话题。由于边缘架构能够降低延迟并提升性能,企业已经广泛采用这种架构来解决速度、安全性和效率方面的挑战。
虽然这些优势长期以来都很重要,但在实时数据分析和人工智能时代,边缘计算变得更加关键。这些工作负载需要近乎瞬时的处理能力,使得传统网络架构变得不太可行。
但是,关于边缘计算的讨论有多少只是纸上谈兵,又有多少反映了真实的应用情况?企业在多大程度上积极部署边缘工作负载?他们面临哪些挑战,又看到了哪些好处?
为了回答这些问题,ITPro Today对IT专业人士进行了调研,了解他们所在组织的边缘计算策略和投资情况。本报告详细介绍的调研结果,为边缘计算的现状以及企业在网络边缘的下一步投资计划提供了宝贵见解。
主要调研发现包括:
o IT专业人士对边缘计算的认知仍然有限,55%的受访者表示他们对这一概念只是"有一定了解"。
o 边缘计算投资差异很大:21%的企业在IT预算中分配不到5%,而33%的企业至少将10%的预算投入到边缘相关项目中。
o 性能改善和安全性是采用IT边缘计算的主要驱动因素。
o 分析和数据缓存是主要用例,而更先进的应用——如AI/ML推理和智慧城市基础设施——仍然不够普及。
o Microsoft Azure IoT Edge是使用最广泛的边缘平台,尽管组织采用的解决方案各不相同。
o 混合云-边缘模型是主流架构,36%的组织都在实施这种架构。
o 成本是边缘计算采用的最大障碍。
o 企业正在部署各种策略和解决方案来降低边缘数据安全风险。
如需深入了解调研数据及其对现代IT策略的影响,请立即下载我们的《2025年边缘计算趋势报告》免费副本!
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。