Brad Theilman 面对镜头,背景中 Felix Wang 正在拆封一批新的 SpiNNaker2 计算核心。 这项成果是 Sandia 与 SpiNNcloud 合作的产物,将成为双方合作推出的全球首个商业产品。 此项目由 NNSA 的 Advanced Simulation and Computing (ASC) 项目资助,旨在探索如何利用神经形态计算支持国家核威慑任务。 SpiNNaker 为 “Spiking Neural Network Architecture” 的缩写,是一款受大脑启发而设计的神经形态计算机,专用于大规模、实时模拟类脑应用。 该技术不仅能模拟大规模类脑网络,增进科研人员对大脑的理解,同时也为检验当前计算能力的极限提供了一个框架。 图片由 Craig Fritz 拍摄。
桑迪亚国家实验室已启动其 SpiNNaker 2 “类脑”超算,该系统摒弃了 GPU 与内部存储。
该系统由德国 SpiNNcloud 提供,将位居前五名的 “类脑”平台之列,其模拟的神经元数量介于 1.5 亿至 1.8 亿之间。
这一架构最初由 Arm 先驱 Steve Furber 开发,虽然其神经元数量明显低于人脑的 1000 亿神经元。
正如 SpiNNcloud 解释的那样,SpiNNaker 2 的高度并行架构在每块服务器板上集成 48 枚 SpiNNaker 2 芯片,每枚芯片均配备 152 个基于核心和专用加速器。
每枚芯片配备 20 MB 的 SRAM,每块板上配置 96 GB 的外部 LPDDR4 内存。 因此,一套 90 块板的系统总共拥有 8640 GB 的 DRAM,而一套 1440 块板的系统则拥有 69120 枚芯片和 138240 TB 的 DRAM。
毋庸置疑,该系统采用高速芯片间通信。 SpiNNcloud 表示,这一设计连同庞大的内存容量,共同消除了对集中式存储的需求。
DRAM 加速
对于桑迪亚来说,他们已接收到一套由 24 块板、175000 个核心构成的系统。 据 SpiNNcloud 介绍,“这台超算已接入现有的 HPC 系统,且内部不包含操作系统或磁盘。其速度优势在于数据始终保存在 SRAM 和 DRAM 中。”
标准的平行以太网端口“足以加载/保存数据。” SpiNNcloud 还表示,“当前最大系统”拥有超过 10500000 个核心,这意味着其能够实现生物学意义上的实时运算。
此外,与 GPU 系统相比,该系统在能效上更为出色,能够支持复杂事件驱动的计算和模拟。
SpiNNcloud 联合创始人兼 CEO Hector A. Gonzalez 表示,该系统将主要针对“下一代国防及其他领域”中的问题。 SpiNNaker2 的效率提升使其特别适合满足国家安全应用中对计算性能的严苛需求。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。