Brad Theilman 面对镜头,背景中 Felix Wang 正在拆封一批新的 SpiNNaker2 计算核心。 这项成果是 Sandia 与 SpiNNcloud 合作的产物,将成为双方合作推出的全球首个商业产品。 此项目由 NNSA 的 Advanced Simulation and Computing (ASC) 项目资助,旨在探索如何利用神经形态计算支持国家核威慑任务。 SpiNNaker 为 “Spiking Neural Network Architecture” 的缩写,是一款受大脑启发而设计的神经形态计算机,专用于大规模、实时模拟类脑应用。 该技术不仅能模拟大规模类脑网络,增进科研人员对大脑的理解,同时也为检验当前计算能力的极限提供了一个框架。 图片由 Craig Fritz 拍摄。
桑迪亚国家实验室已启动其 SpiNNaker 2 “类脑”超算,该系统摒弃了 GPU 与内部存储。
该系统由德国 SpiNNcloud 提供,将位居前五名的 “类脑”平台之列,其模拟的神经元数量介于 1.5 亿至 1.8 亿之间。
这一架构最初由 Arm 先驱 Steve Furber 开发,虽然其神经元数量明显低于人脑的 1000 亿神经元。
正如 SpiNNcloud 解释的那样,SpiNNaker 2 的高度并行架构在每块服务器板上集成 48 枚 SpiNNaker 2 芯片,每枚芯片均配备 152 个基于核心和专用加速器。
每枚芯片配备 20 MB 的 SRAM,每块板上配置 96 GB 的外部 LPDDR4 内存。 因此,一套 90 块板的系统总共拥有 8640 GB 的 DRAM,而一套 1440 块板的系统则拥有 69120 枚芯片和 138240 TB 的 DRAM。
毋庸置疑,该系统采用高速芯片间通信。 SpiNNcloud 表示,这一设计连同庞大的内存容量,共同消除了对集中式存储的需求。
DRAM 加速
对于桑迪亚来说,他们已接收到一套由 24 块板、175000 个核心构成的系统。 据 SpiNNcloud 介绍,“这台超算已接入现有的 HPC 系统,且内部不包含操作系统或磁盘。其速度优势在于数据始终保存在 SRAM 和 DRAM 中。”
标准的平行以太网端口“足以加载/保存数据。” SpiNNcloud 还表示,“当前最大系统”拥有超过 10500000 个核心,这意味着其能够实现生物学意义上的实时运算。
此外,与 GPU 系统相比,该系统在能效上更为出色,能够支持复杂事件驱动的计算和模拟。
SpiNNcloud 联合创始人兼 CEO Hector A. Gonzalez 表示,该系统将主要针对“下一代国防及其他领域”中的问题。 SpiNNaker2 的效率提升使其特别适合满足国家安全应用中对计算性能的严苛需求。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。