"对 Blackwell 产能提升的担忧是合理的,但我们现在已经成功提升了 Blackwell 的产能," Nvidia CEO Jensen Huang 在财报发布后接受 CNBC 采访时表示。
Huang 补充说,他认为 Nvidia "已经成功度过了" 投资者担心的客户从 Hopper 向 Blackwell 过渡期间的需求真空期。
"我们下个季度会有不错的业绩表现。而且我们有相当充足的 Blackwell 需求管线,"Huang 说道。
Jefferies 分析师在周四的研报中指出,"供应链将继续改善",他们"没有看到任何 Blackwell 需求问题的迹象"。
在财报公布之前,尽管中国 AI 初创公司 DeepSeek 带来了冲击波,分析师们仍然乐观地认为,随着 Blackwell 产能的提升,这家芯片制造商将超越预期并提高展望。
"Nvidia 股票最近因 DeepSeek 和 AI 需求将下降的说法而受挫,但事实证明这些担忧是没有根据的,因为客户们继续竞相扩大 AI 基础设施规模,主要使用 Nvidia 芯片,"Thornburg Investment Management 的投资组合经理 Sean Sun 在与 Quartz 分享的评论中表示。
研究公司 Radio Free Mobile 创始人 Richard Windsor 也在与 Quartz 分享的评论中表示,他不认为 DeepSeek 会"打击对 Nvidia 数据中心芯片的需求"。
Windsor 表示,这家芯片制造商对本财年的预期"看起来相当准确,再加上我认为公司具有良好的可见度,意味着今年不会有太多意外"。
与此同时,Sun 表示,投资者对 Nvidia 顶级客户设计自有定制芯片的担忧"似乎有些过度"。"Nvidia 的生态系统优势和软件技术栈仍然是进入市场的强大壁垒。"
在财报后的电话会议上,Nvidia 表示,像 OpenAI 和 Google 这样的公司正在竞争的推理 AI 模型"与单次推理相比,每个任务可能需要 100 倍的计算量"。
Sun 表示,该公司"独特地positioned于捕获这种指数级增长的机会"。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。