赞助文章 尽管生成式 AI 和 GPU 加速 AI 训练与推理已经席卷全球,但全球数据中心仍然需要认真考虑 CPU 的问题。
首先,在大多数公司中,有数百到数千个后台工作负载在支撑业务运营,这些负载有时还需要关系型数据库的支持。毫无疑问,维护这些设备至关重要。
同时,对这些设备进行现代化改造也是一种方式,可以帮助支付未来几年在 AI 基础设施方面的巨额投资,无论公司是购买训练好的模型还是自行创建。无论如何,GenAI 都将是一项昂贵的投资,而通过降低通用服务器机群的成本,不仅可以减少这部分传统服务器机群的电力和冷却支出,还能同时提升其性能。
此外,配备大量核心、强大 I/O 和内存带宽的现代处理器,也是提高昂贵 AI 服务器机群投资回报的一种方式。根据 AMD 在配备八个 GPU 的服务器节点上进行的基准测试,像 "Turin" AMD Epyc 9575F 这样的高速 CPU 可以将 AI 推理性能提升高达 8%,AI 训练性能提升高达 20%。考虑到 GPU 的高昂成本,这种性能提升带来的收益远远超过了在 AI 主机上购买更快 CPU 所需的增量成本。
最后,在许多情况下,直接在 CPU 上运行 AI 算法是有意义的,因为现今的 CPU 完全有能力执行 AI 推理和轻量级 AI 训练所需的向量运算。因此,即使是在通用服务器机群中,拥有高性能 CPU 也很重要。
我们就这些问题与 AMD 服务器解决方案部门的公司副总裁 Madhu Rangarajan 进行了讨论,他负责产品管理、规划和营销工作。我们还探讨了一个观点:现在比以往任何时候都更需要考虑在数据中心部署单插槽服务器,摆脱传统的双插槽服务器思维。
如需了解更多关于 AMD 更新数据中心服务器机群的战略,请观看上方视频。
好文章,需要你的鼓励
百川智能发布突破性AI模型Baichuan-Omni-1.5,实现文字、图像、视频、音频的统一理解与生成。该7B参数模型在多项测试中超越同类产品,特别在医疗图像理解方面达到83.8%准确率,超过72B参数竞争模型。研究团队使用500亿高质量多模态数据,创新的四阶段训练策略,以及独创的音频处理技术,解决了多模态AI的关键技术难题,为人机交互开辟新方向。
Mozilla和EleutherAI联合发布了一份关于创建开放授权大语言模型训练数据集的最佳实践指南。该研究通过召集30位专家,制定了七个核心原则和详细的技术建议,旨在解决当前AI训练数据版权争议、透明度不足等问题,推动构建更加开放、公平和可持续的AI生态系统,为未来AI发展提供了重要的指导框架。