赞助文章 尽管生成式 AI 和 GPU 加速 AI 训练与推理已经席卷全球,但全球数据中心仍然需要认真考虑 CPU 的问题。
首先,在大多数公司中,有数百到数千个后台工作负载在支撑业务运营,这些负载有时还需要关系型数据库的支持。毫无疑问,维护这些设备至关重要。
同时,对这些设备进行现代化改造也是一种方式,可以帮助支付未来几年在 AI 基础设施方面的巨额投资,无论公司是购买训练好的模型还是自行创建。无论如何,GenAI 都将是一项昂贵的投资,而通过降低通用服务器机群的成本,不仅可以减少这部分传统服务器机群的电力和冷却支出,还能同时提升其性能。
此外,配备大量核心、强大 I/O 和内存带宽的现代处理器,也是提高昂贵 AI 服务器机群投资回报的一种方式。根据 AMD 在配备八个 GPU 的服务器节点上进行的基准测试,像 "Turin" AMD Epyc 9575F 这样的高速 CPU 可以将 AI 推理性能提升高达 8%,AI 训练性能提升高达 20%。考虑到 GPU 的高昂成本,这种性能提升带来的收益远远超过了在 AI 主机上购买更快 CPU 所需的增量成本。
最后,在许多情况下,直接在 CPU 上运行 AI 算法是有意义的,因为现今的 CPU 完全有能力执行 AI 推理和轻量级 AI 训练所需的向量运算。因此,即使是在通用服务器机群中,拥有高性能 CPU 也很重要。
我们就这些问题与 AMD 服务器解决方案部门的公司副总裁 Madhu Rangarajan 进行了讨论,他负责产品管理、规划和营销工作。我们还探讨了一个观点:现在比以往任何时候都更需要考虑在数据中心部署单插槽服务器,摆脱传统的双插槽服务器思维。
如需了解更多关于 AMD 更新数据中心服务器机群的战略,请观看上方视频。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。