赞助文章 尽管生成式 AI 和 GPU 加速 AI 训练与推理已经席卷全球,但全球数据中心仍然需要认真考虑 CPU 的问题。
首先,在大多数公司中,有数百到数千个后台工作负载在支撑业务运营,这些负载有时还需要关系型数据库的支持。毫无疑问,维护这些设备至关重要。
同时,对这些设备进行现代化改造也是一种方式,可以帮助支付未来几年在 AI 基础设施方面的巨额投资,无论公司是购买训练好的模型还是自行创建。无论如何,GenAI 都将是一项昂贵的投资,而通过降低通用服务器机群的成本,不仅可以减少这部分传统服务器机群的电力和冷却支出,还能同时提升其性能。
此外,配备大量核心、强大 I/O 和内存带宽的现代处理器,也是提高昂贵 AI 服务器机群投资回报的一种方式。根据 AMD 在配备八个 GPU 的服务器节点上进行的基准测试,像 "Turin" AMD Epyc 9575F 这样的高速 CPU 可以将 AI 推理性能提升高达 8%,AI 训练性能提升高达 20%。考虑到 GPU 的高昂成本,这种性能提升带来的收益远远超过了在 AI 主机上购买更快 CPU 所需的增量成本。
最后,在许多情况下,直接在 CPU 上运行 AI 算法是有意义的,因为现今的 CPU 完全有能力执行 AI 推理和轻量级 AI 训练所需的向量运算。因此,即使是在通用服务器机群中,拥有高性能 CPU 也很重要。
我们就这些问题与 AMD 服务器解决方案部门的公司副总裁 Madhu Rangarajan 进行了讨论,他负责产品管理、规划和营销工作。我们还探讨了一个观点:现在比以往任何时候都更需要考虑在数据中心部署单插槽服务器,摆脱传统的双插槽服务器思维。
如需了解更多关于 AMD 更新数据中心服务器机群的战略,请观看上方视频。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。