芯片设计初创公司 Baya Systems Inc. 今日宣布完成 3600 万美元融资,用于支持其业务增长并加速软件产品组合的开发,以满足新兴"芯片组"经济的需求。
本轮 B 轮融资由 Maverick Silicon 和 Synopsys Inc. 领投,现有投资者 Matrix Partners 和 Intel Capital 也参与其中。
随着人工智能的发展,所谓的芯片组或片上系统 (SoC) 变得越来越受欢迎,因为 AI 需要极其高效的数据移动和计算密度。SoC 将各种半导体组件结合在一起,包括中央处理器、图形处理器、神经网络加速器和其他类型的芯片,以创建更高效的计算平台。然而,将如此多的不同组件放在单个硅片上的挑战之一是需要确保各个部件之间能够快速移动数据的高效设计。
芯片制造商通过将片上网络 (NoC) 技术与其 SoC 集成来解决这个问题。NoC 是专门的组件,可以在芯片上移动数据,同时最大限度地减少连接所有组件所需的资源。
它们跨越 SoC,但挑战在于多芯片实现——即公司希望连接大型 SoC 集群以运行更强大的应用程序和工作负载。简而言之,当 NoC 需要与其他 NoC 通信时,效果并不理想。
Baya Systems 表示,他们开发了一种"革命性的"芯片组优化 NoC 和物理链路 (PHY) 互连解决方案来解决这个挑战。该公司表示,虽然现在可以通过 PHY 连接单个芯片组上的 NoC,但这样做效率低下。
这就是为什么该公司提出了一种新方法,将各种 NoC 整合到一个"统一结构"中,使其像单个智能全局 NoC 一样运作。根据 Baya Systems 的说法,其技术有助于降低延迟,提高 NoC 间通信的带宽和吞吐量,同时在多芯片设计中提供更大的流量路由灵活性。
Baya Systems 创始人兼首席执行官 Sailesh Kumar 博士表示,复杂 SoC 和结合 CPU、GPU 及其他加速器的芯片组的设计师通常会依赖"暴力"解决方案,他认为这是不可持续的。
"存在太多风险,例如高昂的重新设计成本、扩展困难,以及可能推出性能不佳的产品,"他说。"Baya 以性能为中心的软件方法,结合我们独特的传输和模块化结构 IP,从一开始就设计用于生产在构建时就正确的复杂多芯片解决方案,并简化设计流程。"
Baya Systems 表示,其技术优化并简化了芯片组通信,使系统设计师能够专注于系统的增值部分。换句话说,芯片设计师可以转而专注于使其芯片组变得更强大。
Maverick Silicon 董事总经理 Andrew Homan 表示,AI 的挑战不在于提供计算能力,而在于实现无缝数据移动。"Baya Systems 团队凭借 WeaverPro、WeaveIP 和其他解决方案,在行业中独特地填补了这一关键空白,"他说。
Baya Systems 表示,其软件的早期采用者包括 AI 芯片初创公司 Tenstorrent Inc.,该公司最近筹集了 6.93 亿美元的后期融资,以推动其与 Nvidia Corp. 竞争的雄心。该公司正在基于 RISC-V 架构设计更经济的 AI 加速器,消除了对高内存带宽等昂贵组件的需求。
该初创公司表示,计划在今年晚些时候宣布与更多芯片制造商的合作。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。