芯片设计初创公司 Baya Systems Inc. 今日宣布完成 3600 万美元融资,用于支持其业务增长并加速软件产品组合的开发,以满足新兴"芯片组"经济的需求。
本轮 B 轮融资由 Maverick Silicon 和 Synopsys Inc. 领投,现有投资者 Matrix Partners 和 Intel Capital 也参与其中。
随着人工智能的发展,所谓的芯片组或片上系统 (SoC) 变得越来越受欢迎,因为 AI 需要极其高效的数据移动和计算密度。SoC 将各种半导体组件结合在一起,包括中央处理器、图形处理器、神经网络加速器和其他类型的芯片,以创建更高效的计算平台。然而,将如此多的不同组件放在单个硅片上的挑战之一是需要确保各个部件之间能够快速移动数据的高效设计。
芯片制造商通过将片上网络 (NoC) 技术与其 SoC 集成来解决这个问题。NoC 是专门的组件,可以在芯片上移动数据,同时最大限度地减少连接所有组件所需的资源。
它们跨越 SoC,但挑战在于多芯片实现——即公司希望连接大型 SoC 集群以运行更强大的应用程序和工作负载。简而言之,当 NoC 需要与其他 NoC 通信时,效果并不理想。
Baya Systems 表示,他们开发了一种"革命性的"芯片组优化 NoC 和物理链路 (PHY) 互连解决方案来解决这个挑战。该公司表示,虽然现在可以通过 PHY 连接单个芯片组上的 NoC,但这样做效率低下。
这就是为什么该公司提出了一种新方法,将各种 NoC 整合到一个"统一结构"中,使其像单个智能全局 NoC 一样运作。根据 Baya Systems 的说法,其技术有助于降低延迟,提高 NoC 间通信的带宽和吞吐量,同时在多芯片设计中提供更大的流量路由灵活性。
Baya Systems 创始人兼首席执行官 Sailesh Kumar 博士表示,复杂 SoC 和结合 CPU、GPU 及其他加速器的芯片组的设计师通常会依赖"暴力"解决方案,他认为这是不可持续的。
"存在太多风险,例如高昂的重新设计成本、扩展困难,以及可能推出性能不佳的产品,"他说。"Baya 以性能为中心的软件方法,结合我们独特的传输和模块化结构 IP,从一开始就设计用于生产在构建时就正确的复杂多芯片解决方案,并简化设计流程。"
Baya Systems 表示,其技术优化并简化了芯片组通信,使系统设计师能够专注于系统的增值部分。换句话说,芯片设计师可以转而专注于使其芯片组变得更强大。
Maverick Silicon 董事总经理 Andrew Homan 表示,AI 的挑战不在于提供计算能力,而在于实现无缝数据移动。"Baya Systems 团队凭借 WeaverPro、WeaveIP 和其他解决方案,在行业中独特地填补了这一关键空白,"他说。
Baya Systems 表示,其软件的早期采用者包括 AI 芯片初创公司 Tenstorrent Inc.,该公司最近筹集了 6.93 亿美元的后期融资,以推动其与 Nvidia Corp. 竞争的雄心。该公司正在基于 RISC-V 架构设计更经济的 AI 加速器,消除了对高内存带宽等昂贵组件的需求。
该初创公司表示,计划在今年晚些时候宣布与更多芯片制造商的合作。
好文章,需要你的鼓励
在 NVIDIA GTC 大会上,多家汽车和自动驾驶公司宣布采用 NVIDIA 技术推进自动驾驶发展。通用汽车将扩大与 NVIDIA 的合作,涉及工厂、机器人和自动驾驶汽车等多个领域。自动驾驶卡车公司 Gatik、Plus 和 Torc 也将采用 NVIDIA 的多项技术方案,推动 L4 级自动驾驶商业化。同时,沃尔沃利用 NVIDIA GPU 进行空气动力学模拟,优化电动汽车设计。
Deepmind创始人Demis Hassabis表示,人工智能的许多能力可能需要10年才能充分显现。他预计AI将演变为具有人类认知能力的通用人工智能。Google推出了新的音频生成模型Chirp 3,并扩展了AI代理服务Agentspace。Hassabis强调了AI代理系统的发展,包括多代理协作和专业化代理的应用,但也指出了AI规划算法中错误累积的挑战。
OpenAI 的 AI 推理研究主管 Noam Brown 表示,如果研究人员早知道正确方法和算法,类似 OpenAI 的 o1 这样的"推理"AI 模型本可以在 20 年前就出现。Brown 强调了测试时推理技术的重要性,同时指出预训练仍然重要。他还讨论了学术界与前沿实验室合作的机会,以及 AI 基准测试的改进空间。
新西兰航空公司与塔塔咨询服务公司签订五年合作协议,旨在全面升级其数字基础设施,并将人工智能技术融入核心运营。这项合作涉及航空公司多个业务领域,包括机队管理、机组排班和地面服务等。此次合作标志着新西兰航空向成为全球最先进的数字化航空公司迈出重要一步。