IBM商业价值研究院日前发布一份长达28页题为“大型机是数字化转型的支柱”的报告。报告发现,79%的IT高管都认为大型主机对于实现人工智能驱动的创新至关重要。报告指出,经过六十年的发展,大型机已成为存储和处理大量关键业务数据的支柱。在企业开始人工智能驱动数字化转型之旅之际,大型机将在提升数据价值方面发挥关键作用。
IBM 的担忧似乎在于,大型机用户不应该假定现代、生成性人工智能工作负载只是可以在公共云和/或企业数据中心中的 x86 和 GPU 服务器上运行。大型机同样也可以运行这一类的人工智能工作负载。
笔者在出版前有幸读了这份报告。报告的着笔点是大型机-公有云-边缘的混合方法,需将工作负载放在最合适的平台上。人工智能可用于加速大型机应用程序现代化、增强事务性工作负载和改善大型机运营。报告称,“将企业内部大型机与超大规模机相结合,可以创建一种集成运营模式。这种运营模式可以实现敏捷实践和促进应用程序之间的互操作性。”
报告建议大型机用户“利用人工智能获取交易之间的洞察,以增强业务用例,包括欺诈检测、反洗钱、信贷决策、产品推荐、动态定价和情感分析”。
大型机性能可以提升基于规则的人工智能信用评分,一家北美银行在公共云仅对20%的信用卡交易进行评分,每笔交易耗时80毫秒,而将应用程序迁移到大型机上则能够实现100%信用卡交易的评分,每秒可处理15,000笔交易,每笔交易耗时2毫秒,预计每年可节省2000万美元的防欺诈支出。
大型机配备了嵌入式片上人工智能加速器,“可以扩展到以极低的延迟每秒处理数百万个推理请求,这对于交易型人工智能用例(如检测支付欺诈)尤为重要” 。IBM表示,“传统人工智能可用于评估银行支付是否存在欺诈行为,而大型语言模型(LLM)则可用于提高预测的准确性。”
IBM 的 Ensemble AI (组合人工智能)方法就是这样做的:将现有的机器学习模型与更新的 LLM 结合起来。
人工智能可用于改善大型机管理。报告发现,“74% 的高管认为,将人工智能整合到大型机运营中并改变系统管理和维护非常重要。基于人工智能的自动化、预测分析、自我修复和自我调整等功能可以主动检测和预防问题,优化工作流程,提高系统的可靠性。”
大型机可以利用人工智能进行监控、分析、检测和应对网络威胁。此外,生成式人工智能大型语言模型和代码助手可以加速旧编码语言(Cobol)的工作,例如转换为 Java 和 JCL 开发,从而“通过使开发人员能够更快、更高效地实现现代化或构建应用程序,缩小大型机的技能差距”。
IBM 将在 2025 年推出的下一代 z16 大型机中采用人工智能专用 DPU(数据处理单元),从而实现人工智能处理卸载的方法。该系统将配备多达 32 个 Telum II 处理器,支持以 24 TOPS 的速度进行片上人工智能推理加速。Spyre 加速器将增加 32 个人工智能加速器核和 1GB DRAM,其性能与 Telum II 片上人工智能加速器相当。在下一代大型机中,最多可以与Telum II单元一起使用8个人工智能加速器。
不过,蓝色巨人并未打算在旗下大型机架构中添加 GPU。推理工作负载将在大型机上有效运行,但人工智能训练工作负载则不然。我们可以期待 IBM 会有一些实现进行大型机矢量化和矢量数据库功能的安排,以支持推理工作负载中的检索增强生成(RAG)。
对于笔者而言,为大型机添加 GPU 是一个重要的终极目标,原因是大型机配备了 GPU 就打开了在大型机这个经典的大型平台上运行人工智能训练工作负载的大门。或许,GPU 协处理器的概念将成为 z17 大型机的卖点。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。