领导AMD芯片开发部门的高管Jack Huynh在今天发表的 Tom's Hardware 采访中透露了这一计划。
AMD提供两类显卡。第一类面向企业市场,使用的是名为CDNA 3的架构。该架构经过优化,可运行人工智能软件,尤其是大型语言模型。
人工智能模型在做出决策时会进行一些计算,其中涉及一些值为零的数据点。CDNA 3 可以将这些数据压缩成更紧凑的形式,从而减少GPU处理能力的使用,加快计算速度。该架构还包括其他几项旨在加快人工智能工作负载的优化。
反过来,AMD消费级GPU的设计针对的是电子游戏而非LLM,它们采用了名为RDNA 3的架构。该设计有别于CNDA 3的一个特点是它能更好地支持光线追踪技术,这是许多电子游戏用来渲染光影效果的一种技术。
在今天的采访中,Huynh透露AMD计划将RDNA和CDNA合并为一个芯片架构。这一未来技术将成为公司所有GPU的基础。他列举了决定统一设计的三个主要原因。
第一个原因是,开发一种而不是两种GPU架构将使 AMD的工程部门的运作更有效率。Huynh表示,改变方向背后的另一个因素是,该公司消费级GPU的架构RDNA有一定的设计限制。这些限制使得AMD的工程师在升级该架构的内存组件时面临挑战。
Huynh表示,芯片架构统一也将使第三方开发者受益。为一种芯片架构优化应用比为两种架构优化应用更简单,这将减轻软件团队的工作。
Huynh 还透露了AMD在高端消费级 GPU 市场的最新计划。该市场目前的领跑者是竞争对手英伟达,英伟达估计占芯片出货量的88%。AMD占据剩下的12%。
Huynh表示,AMD今后将优先考虑低成本显卡。该公司计划先扩大在这一市场的份额,然后再重新聚焦与英伟达的高端消费级GPU竞争。Huynh解释说,这一决定与开发人员的采用状况有关。
消费级GPU的需求水平在很大程度上受到针对其进行了运行优化的电子游戏数量的影响。AMD相信,提高其在低端 GPU 市场的份额将说服更多的开发商为其芯片优化游戏。一旦建立起这样的市场基础,AMD就能更好地在高端 GPU 领域与英伟达展开竞争。
好文章,需要你的鼓励
从电子商务到非营利组织,利用企业数据资产可能是组织成败的关键。机器学习和生成式AI是其中的一个组成部分,但要成功地应用这些技术则评估AI对业务的实际影响。
在对生成式AI进行了近两年的试验之后,许多IT领导者已经准备好扩大规模了。然而,在此之前,他们需要重新考虑数据管理问题。
数字广告的增长并不能很好地触及目标受众。事实上,有研究表明51%的用户屏蔽掉了那些盲目用不相关数字广告轰炸其眼球的品牌。在这种情况下,整合了情感AI的情境广告策略被证明更能有效传达营销信息。
微软及其Azure Quantum项目的合作方们一直在量子计算研究项目中开辟新的天地。最近,他们即将成功把逻辑量子比特的数量增加至四倍,而这只是今年开展的一系列重要量子研究项目中的最新成果。