
(2024年6月26日,北京)近日,IBM凭借其旗舰Granite系列模型,在2024年第二季度的《Forrester Wave™:语言AI基础模型》报告中,被评为“强劲表现者”。点击链接即可免费下载报告副本。
随着企业从生成式AI的试验阶段转向生产阶段,他们正在寻找基础模型的最佳选择,他们希望这些模型能够提供可信、性能优越且成本效益高的生成式AI。企业认识到,如果基础模型不可信,他们就无法扩展生成式AI。
IBM® Granite™ 是IBM的旗舰基础模型系列,基于仅解码器的Transformer架构。这些模型在涵盖互联网、学术、代码、法律和金融等领域的可信企业数据上进行训练,可以在IBM watsonx™、RedHat®、其他模型市场以及Hugging Face和GitHub等开源平台上获取。
IBM对AI信任和可靠性的承诺和方法,受到Forrester的认可
虽然大多数模型提供商专注于提高性价比,但IBM在设计和交付各种用例和应用的模型时,优先考虑信任和透明性,同时仍能实现合适的性价比。IBM痴迷于帮助客户取得生成式AI使命的成功,其实现这一承诺的方法是:正确地构建人工智能,提供正确的人工智能。
Forrester认为,Granite系列模型为企业用户提供了对基础训练数据的一些最稳健和清晰的洞察。这对于有效地改进特定用例和领域的模型行为,以及保护企业免受训练数据中任何未授权内容带来的风险至关重要。
这一认可验证了IBM在交付企业级基础模型方面的差异化方法,帮助客户加速生成式AI在其业务工作流程中的应用,同时减轻与基础模型相关的风险。

此外,Forrester给出的关于潜在改进领域的建设性反馈也非常及时,因为IBM正以开源创新重振其模型策略,从而在现有产品的强大基础上,可以迅速扩大市场影响力,为众多企业客户、合作伙伴和开发人员提供服务,并取得了显著的进展。
2024年,IBM在促进基础模型的增长和转型之旅中,积极寻求来自Forrester等行业专家、客户和人工智能生态系统的意见,凭借开放的心态和演绎推理不断探索。
IBM凭借其差异化的模型方法,在现有产品中排名第二:
IBM Granite模型在此次Forrester Wave评估中,在内容语料库过滤、知识产权、模型透明度和一致性方面获得了满分。Granite模型受隐私和负责技术办公室的管控,根据AI伦理和原则进行训练和调优,并采用了IBM Research®创新的AI对齐技术。
由于这些固有特性以及watsonx这一强大可靠的AI和数据平台的支持,以及通过红帽® OpenShift®的混合部署选项,IBM模型在企业就绪性、治理和安全性、应用程序开发和模型管理方面获得最高评分。这也与最近斯坦福透明度指数的结果一致,该指数认可Granite模型在开放性和可信度方面的优异表现。
Forrester对于IBM Granite的洞察:
IBM继续通过引入第三方模型来扩展其基础模型库,以增强多模态和多语言能力,并提供自带模型(BYOM)的选项。此方法与其Granite模型系列的研究开发和开放创新相辅相成。
请阅读最近在IBM THINK大会上宣布的与第三方模型合作伙伴关系相关的更多消息。IBM业务发展和战略合作伙伴团队还将继续签署特定的商业和独立软件供应商协议,以扩展平台上的模型选择。 正如 Forrester 所言,在基础模型方面,选择和灵活性将成为企业决策的关键因素。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。