对于大众来说,人工智能(AI,artificial intelligence)可以说已经非常常见和熟悉了。但是通用人工智能(AGI,Artificial General Intelligence)呢?它是一个长期以来在科幻和哲学中讨论的概念,它指的是具有类似人类推理能力的AI。
当聊天机器人和生成式人工智能逐步进入了消费大众的视线,AI掌握了一定的自学习能力,技术迭代的速度大幅提升。然而,大多数专家意识到它们无法像人类那样进行推理。
IEEE会员Karthik K.认为,尽管取得了许多突破,但生成式人工智能缺乏类似人类的推理能力,因为它基于模式和数据进行操作,而没有掌握它们的含义,无法将已经学到的概念扩展到新的使用场景中。
那么AI和AGI之间有什么区别呢?我们如何知道它何时达到了人类决策的水平?这些问题很难回答,部分原因是没有一个公认的AI定义,更不用说AGI了。
但这些问题仍然很重要,因为它们阐明了当今技术的能力和局限性。
AI没有明确的定义
人工智能的定义是模糊的,涉及多个学科。《IEEE人工智能汇刊》(https://ieeexplore.ieee.org/document/9523786)的一篇社论指出,来自计算机科学、心理学、生物学、数学和物理学等多个学科的学者试图对其进行定义。
社论指出:“每一个定义都受到了批评,所以未能在每一个学科内达成共识,更不用说普遍共识了。”
AGI测试
在缺乏对AGI的明确定义的情况下,许多理论家提出了对通用人工智能的各种测试。这个想法是,我们可能无法定义它,但也许当我们看到它时就会知道。
最著名的是1950年的图灵测试,该测试设想召集一组专家向“先知”提问。同样,如果专家们无法判断答案来自人类还是机器,那么根据测试 ——AGI被认为具有人类智能。
苹果公司的创始人之一、IEEE Fellow Steve Wozniak将咖啡测试作为AGI的一项指标。在测试过程中,机器人必须进入普通家庭并尝试制作咖啡。这意味着要找到所有的工具,找出它们如何运作,然后执行任务。能够完成这个测试的机器人将被认为是AGI的一个例子。
聊天机器人正处于AGI的风口浪尖上吗?
根据IEEE计算机学会出版的《计算机》杂志的一篇深入讨论(https://www.computer.org/csdl/magazine/co/2023/10/10255223/1QzypCsRrgs),AI与其类人对应物之间的差异存在于一个连续体上。早期的AI发展了单一领域的专业知识,比如国际象棋和围棋。今天的高级人工智能可以理解语言,将语言翻译成图像,并分析图像中癌症的迹象等。
尽管这些成就令人印象深刻,但它们并不像人类那样思考和推理。
那么,聊天机器人离实现AGI还有多远呢?
乍一看,像ChatGPT这样的聊天机器人非常接近通过图灵测试,被归类为AGI。他们可以自信地写出覆盖各种学科种类的合理优秀的文章。
虽然聊天机器人甚至可以通过法律等领域的专业许可考试,但它们在基础层面也会面临失败 —— 聊天机器人经常把数学题弄错。他们对引用的属性错误,并不总是理解因果关系,在推理问题上得出错误的答案。
IEEE会员Sukanya Mandal表示:“实现AGI的下一步可能涉及开发人工智能系统,这些系统可以在广泛的领域展示更先进的推理、解决问题和学习能力。这可能包括将知识从一个环境转移到另一个环境的能力,从有限的数据或例子中学习的能力,以及在新的情况下表现出创造力和适应性的能力。”
好文章,需要你的鼓励
AI能让够更早,更准确的发现并预测癌变的发生,这也是目前AI医疗的的一个主流发展方向,更早的发现,更准确的预测。最近一项来自美国国立卫生研究院(NIH)的研究就在对肺癌精准预测方向上取得了重大突破
字节跳动联合浙江大学发布了ImmerseGen系统,这是一个能根据文字描述自动生成VR世界的AI工具。该系统采用轻量化代理和RGBA纹理技术,用AI代理协作完成从地形生成到物体布置的全流程,还能添加动态效果和环境音效。相比传统方法,它生成的场景效率提升数十倍,在移动VR设备上达到79帧流畅运行,为VR内容创作带来革命性突破。
Salesforce发布Agentforce 3平台重大升级,新增指挥中心提供AI智能体实时性能监控,支持MCP开放标准实现与数百种企业工具无缝集成。数据显示AI智能体使用量六个月内激增233%,超8000家客户部署该技术。百事可乐等全球企业已将其深度集成到业务运营中。新版本还提供50%更低延迟、增强安全性和200多个预配置行业操作模板,帮助企业快速部署功能性AI智能体。
慕尼黑大学研究团队开发了SwarmAgentic技术,这是首个能够完全自主生成智能体系统的框架,无需人工预设模板。该技术借鉴蜂群智能原理,让AI系统自己决定需要什么角色、如何分工协作。在旅行规划等六项复杂任务测试中,SwarmAgentic表现优异,在旅行规划任务上比现有最佳方法提升261.8%,展现了全自动智能体系统设计的巨大潜力。