GPU主宰算力芯片,Al信创驱动国产算力发展:得益于硬件支持与软件编程、设计方面的优势,CPU+GPU成为了目前应用最广泛的平台。Al分布式计算的市场主要由算力芯片(55-75%)、内存(10-20%)和互联设备(10-20%)三部分组成。
由于ChatGPT的爆火,GPU需求明显,英伟达也加大对三星和SK海力士HBM3的订单。2023年10月,SK海力士表示,已经在2023年出售了明年HBM3和HBM3E的所有产量。据Omdia预测,到2025年,HBM市场的总收入将达到25亿美元。
集成算力与存力,先进封装产能紧缺:CoWoS封装技术是目前集成HBM与CPU/GPU处理器的主流方案。台积电主导全球CoWoS封装市场。据IDC预测,全球CoWoS供需缺口约20%,2024年台积电的CoWos封装产能将较2023年提升一倍,2.5D/3D先进封装市场规模在2023-2028年将以22%的CAGR高速增长。
Al算力对高效电源提出新需求,背面供电技术蓄势待发:越来越高度化的集成会造成针对加速芯片的电源解决方案越来越复杂,方案需要不同电压、不同路的多路输入,这种情况下电压轨会越来越多。台积电、三星、英特尔等芯片大厂都在积极布局背面供电网络技术,为日益复杂的芯片提供高效供电方案,其中英特尔较为领先。
好文章,需要你的鼓励
"当我看到梵高的每一笔中都有他的痛苦时,才明白我们看的不是作品,而是作者的人生。AI正以惊人的速度接近人类水平通用智能,让Google从'伦敦那帮疯子在搞AGI'转变为全公司共识。DeepMind让AI'合理地幻觉'来创造突破,就像Astra技术让用户第一次惊呼'AI能做到比想象更多'——这不仅是技术革命,更是重新定义创造力的开始。"
微软研究院前不久发布了一篇论文,揭示了一个反常识的现象:当我们和AI进行长时间多轮对话时,它们会变得越来越"糊涂",给出的答案质量也会明显下降。微软研究院的这项研究,用严谨的科学方法证实了这个现象的存在,这不是个别模型的问题,而是几乎所有大模型的通病。研究团队测试了包括GPT-4、Claude、Gemini在内的15个主流AI模型,发现它们在多轮对话中的表现平均下降了39%。
英伟达2025Q1营收440亿美元创纪录,数据中心业务暴涨73%至390亿美元。黄仁勋直言:"中国是全球最大AI市场,出口管制只会让美国失去平台领导权。Blackwell架构推动推理性能提升30倍,微软已部署数万块GPU,AI工厂正成为各国数字基础设施核心。"
KAIST研究团队开发了CLEANMOL框架,解决了大语言模型理解SMILES分子表示法的关键难题。传统模型即使在简单任务如计数分子环数时也表现不佳,因为SMILES编码中结构信息常呈非连续分布。研究通过设计官能团匹配、环计数等确定性任务,大大提升了模型对分子结构的理解。实验表明,预训练后的模型在逆合成等下游任务上表现优异,精确匹配率从45.6%提升至58.1%。这一突破无需昂贵实验数据,为药物开发和材料设计提供了低成本高效的AI支持方案。