集成了x86、Vega 图形、XDNA AI 和 FPGA 电路的Arm真是太棒了!
作者:Tobias Mann
更新时间:协调世界时2024年2月7日星期三21:53
AMD昨天推出了Embedded+架构,此举提出了一个问题:既然可以拥有五个计算架构,为什么还要选择一个呢?
AMD的最新产品通过PCIe将x64 Ryzen处理器与Versal AI Edge 片上系统结合,让它们可以在网络边缘等低功耗、低延迟数据处理应用的单板上使用。
主处理器可以从Ryzen Embedded R2000系列中挑选,该系列于2022年推出,拥有多达4个Zen+ CPU内核、16个PCIe 3.0 通道和多达8个 Radeon Vega图形计算单元。
该芯片有一个专用的PCIe链路,连接到AMD Versal自适应SoC,前者于2021年首次出现。这些Versal器件包含一系列AI引擎、一个FPGA和四个Arm设计的CPU内核(两个Cortex-A72和两个Cortex-R5)。在ML处理方面,AMD声称其顶级Versal芯片能够在INT8上实现约228 TOPS。
正如Embedded+这个名字所示,这种技术应该应用在相对恶劣条件下经久耐用的设备中——公共显示器、现场仪器和机械、网络边缘处理、运输和汽车等。它不见得非常尖端或者非常强大;可靠性、成本、功耗性能比、占用空间和特定工作负载验证通常更为重要。因此,可以预计这些芯片会使用较旧的架构。
事实上,AMD将目光投向了工业机器人、零售和监控安全、智慧城市设备、网络、机器视觉和医学成像;其客户会判断该硬件的延迟、特质和处理管道是否适合其应用。
AMD的工业视觉、医疗保健和科学市场高级总监Chetan Khona在一份声明中侃侃而谈:“在自动化系统中,传感器数据的价值会随着时间的推移递减,并且必须尽可能使用最新鲜的信息进行操作,以实现最低延迟的确定性响应。在工业和医疗应用中,需要在毫秒级别做出许多决策。”
为了达到这些延迟目标,AMD鼓励开发人员将工作负载分解为更小的部分,这些部分可以通过平台的各种计算架构单独加速。例如,自适应SoC的FPGA和AI引擎可对来自多个传感器或馈送的流数据进行预处理和分类,而Ryzen处理器的CPU和GPU内核则运行控制系统和图形用户界面。
当然,混合内核系统一直是这样处理的,AMD并不是第一个将混合架构置于一块板上甚至单个芯片中的公司。这是显而易见的。有趣的是,AMD不仅在Ryzen和Versal系列中采用了这种做法,还非常强调嵌入式和网络边缘端的AI,如果人们不需要,它就不会这样做。理论上如此。
在首批基于AMD Embedded+设计的系统中,Sapphire的Edge+ VPR-4616-MB非常有创意。它将四核Ryzen嵌入式R2314处理器连接到mini-ITX规格的主板上的Versal AI Edge VE2302 Adaptive SoC,据报道,该主板的功耗低至30瓦。Sapphire还计划为该主板配备内存、存储、PSU和机箱,成为完全组装的计算机。
好文章,需要你的鼓励
英国Oxford Quantum Circuits公司在曼哈顿数据中心安装了纽约市首台量子计算机,旨在为客户提供更快速高效的AI程序运行服务。该公司计划未来3-5年投资数千万美元,部分用于采购英伟达芯片进行集成。这一"量子-AI数据中心"项目预计将显著提升数据生成效率,特别有利于金融领域应用。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
人形机器人公司Figure AI宣布完成超过10亿美元的C轮融资,资金将用于扩大机器人生产、构建英伟达GPU基础设施以加速训练和仿真,并扩展人类工作生活数据收集。该公司目标是在未来四年内交付10万台人形机器人,其Figure 02机器人搭载Helix AI智能系统,能够理解未见过的物体并做出合理行动。英特尔、英伟达、LG等公司参与投资。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。