Nvidia今天宣布推出了一项新的生成式AI微服务,旨在允许企业将自定义聊天机器人、copilot和AI摘要工具连接到实时专有的企业数据以提供更准确的结果。
这项名为NeMo Retriever的新服务是Nvidia NeMo云原生框架和工具系列中的一部分,用于构建、定制和部署生成式AI模型,旨在让企业组织能够把检索增强生成功能构建到他们的生成式AI应用中。
检索增强生成(RAG)是一种通过利用从外部来源检索的事实和数据填补大型语言模型“知识”空白以提高生成式AI模型准确性和安全性的方法。一个大型语言模型接受前期训练,为其提供大量一般任务知识和能力,例如理解对话提示、总结和提供问答能力。训练既昂贵又耗时,因此通常只进行一次或者很少进行训练,以为部署模型做准备。
然而,一旦部署,模型本身将缺乏实时信息和最新的特定领域专业知识,这可能会导致不准确和所谓的“幻觉”——也就是大型语言模型会自信但错误地回答问题。
使用NeMo Retriever,就可以把多种来源(包括数据库、HTML、PDF、图像、视频和其他方式)的最新数据输入大型语言模型,这意味着模型将拥有由企业客户自己专有来源提供的、更全面的事实集,这些事实可以在数据可用时进行更新。数据可以驻留在任何地方,包括云、数据中心或本地环境中,并且可以安全地访问这些数据。
Nvidia公司超大规模和高性能计算副总裁Ian Buck表示:“这是整个企业聊天机器人领域的圣杯,因为绝大多数有用数据都是专有数据,不是嵌入这些模型中的公开可用数据,而是公司内部可用的数据。因此,将AI和客户数据库相结合,可以使其更高效、更准确、更有用,并让客户能够优化模型的功能。”
通过添加专有数据可以减少不准确的答案,因为大型语言模型可以利用更好的上下文信息来产生结果,从而提高准确性。与研究论文如何提供信息来源的引用类似,Retriever的RAG功能会根据企业内部特定领域知识提供额外的专家信息来源,以便更好地为大型语言模型提供信息,使其能够根据问题提供更好的、更准确的答案。
Nvidia表示,与社区主导的开源RAG工具包不同,Retriever旨在支持商业型和生产就绪的生成式AI模型,这些模型已经可用并针对RAG功能、企业支持和托管安全补丁进行了优化。
目前,电子系统设计公司Cadence Design Systems、Dropbox、SAP和ServiceNow等企业客户已经在和Nvidia合作,利用新功能将RAG引入他们定制的生成式AI工具、应用和服务中。
Cadence公司总裁、首席执行官Anirudh Devgan表示,该公司的研究人员正在与Nvidia展开合作,利用Retriever通过提高准确性来帮助生产出更高质量的电子产品。Devgan表示:“生成式AI引入了创新方法来满足客户需求,例如在设计过程早期发现潜在缺陷的工具。
Buck表示,通过使用Retriever,客户可以用更少的时间训练生成式AI模型,以获得更准确的结果,这意味着企业客户可以采用更多现成的模型,简单地部署模型并使用他们自己的内部数据,而无需花费大量的时间、费用和精力来持续训练模型以使保持模型的最新状态。
NeMo Retriever将添加上述RAG功能,作为Nvidia AI Enterprise端到端云原生软件平台的一个组成部分,该平台主要用于简化AI应用的开发。从今天开始,开发者就可以注册抢先体验NeMo Retriever。
好文章,需要你的鼓励
传统数据工程面临数据质量差、治理不善等挑战,成为AI项目的最大障碍。多智能体AI系统通过协作方式正在彻底改变数据准备、治理和应用模式。Google Cloud基于Gemini大语言模型构建协作生态系统,让不同智能体专门负责数据工程、科学、治理和分析等任务。系统通过分层架构理解组织环境,自主学习历史工作流程,能够预防问题并自动处理重复性任务,大幅提升效率。
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
微软推出Copilot调优功能,让企业通过低代码工具利用自动化微调技术训练企业数据。与基于公开数据的通用AI模型不同,企业需要理解内部数据和流程的专业化模型。Gartner预测专业化GenAI模型市场将在2026年翻倍至25亿美元。这些模型通常基于开源模型构建,部署为小语言模型,提供更好的成本控制和数据安全性,同时更易符合欧盟AI法案要求。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。