但目前价格尚未公布,希望数字友好。
HPE与英伟达表示正为客户提供构建模块,可用于组装同布里斯托大学Isambard-AI超级计算机同架构的迷你版本,用以训练生成式AI和深度学习项目。
两家公司正联手销售一款基于HPE Cray EX2500架构及英伟达Grace Hopper超级芯片的模块化机器,其上运行的则是两家公司共同提供的软件工具栈。
该系统将于本周在科罗拉多州召开的SC23高性能计算(HPC)大会上公开演示,设计目标是通过预配置和预测试的完整技术栈,让组织更轻松地启动并运行AI训练。当然,一切要等价格公布之后才有定论。
根据HPE的介绍,该系统是首款采用四GH200超级芯片节点配置的系统,就是说每个节点将包含4块英伟达高端芯片。每块超级芯片都拥有72核Arm架构Grace CPU与Hopper GPU,并配备480 GB的LPDDR5x内存与144 GB HBM3e高带宽内存。
这些节点采用HPE的Slingshot互连技术,这项技术属于以太网的超集,添加了高性能计算(HPC)所必需的诸多功能。
虽然硬件成本相当可观,但HPE表示这套特殊的解决方案允许客户先从小规模起步,随后根据需求灵活扩展。
HPE高性能计算、人工智能与实验室执行副总裁Juston Hotard在采访中表示,“已经有一部分客户发布了搭载Grace Hopper超级芯片的产品,但我们的EX2500仍然独一无二,因为它可作为统一的单位进行部署,全部冷却、供电和计算板件均部署在同一模块之内。”
他解释道,这意味着该系统“不仅为客户提供了非常简单的入门选项,同时还具备广阔的扩展空间。”
作为方案中的软件技术栈,HPE带来了自己的机器学习开发环境(Machine Learning Development Environment)。这是一套用于训练生成式AI模型的平台,主要基于HPE在2021年收购自Defined AI的技术。
方案中还包含英伟达的AI Enterprise套件,这是一系列AI工具和框架的集合,包括TensorFlow、PyTorch、英伟达RAPIDS与TensorRT软件库,以及Triton推理服务器等。客户还可以获得HPE的Cray编程环境,这是一套用于代码开发、移植和调试的工具组合。
Hotard表示,AI训练是目前计算密度最大的工作负载之一,因此对计算架构的要求也比较特殊。
“我们都知道,云架构是围绕单一服务器资源的最大化利用设计而成的。因此在面对工作负载时,这类方案倾向于将任务拆分成一个个较小的部分。”
“但AI工作负载,特别是训练和大规模微调类负载,则有着截然不同的特性。在某些情况下,这些工作负载需要将整座数据中心视为单一计算机来运行。AI工作负载需要运行在几百甚至数千个节点之上,并要求所有计算、互连和存储资源都要像在超级计算机内那样高度一致地规模化运行。”
当然,这套新系统的服务对象仅限那些掌握充足财务预算的组织,不过HPE目前拒绝透露关于成本的具体信息。Hotard表示价格将在不久之后对外公布。
英伟达科学项目经理Jack Wells宣称,基准测试结果显示,在使用Llama 2处理大语言模型(LLM)推理工作负载时,基于GH200的单一节点比双至强CPU服务器快100倍。
他声称,“生成式AI正在重构科学计算思路,并带动起极为巨大的市场需求。”他同时强调,HPE与英伟达的这款产品已经吸引到多家客户。
其中包括苏黎世联邦理工学院的超级计算机、波兰Cyfronet、洛斯阿拉莫斯国家实验室,以及布里斯托大学的Isambard-AI系统(计划部署5448块英伟达GH200超级芯片)。
HPE表示,该服务将从12月登陆30多个国家的市场。除了来自公共部门和研究机构的AI创新中心客户之外,该项目预计还将吸引到不少企业巨头的关注。
好文章,需要你的鼓励
"当我看到梵高的每一笔中都有他的痛苦时,才明白我们看的不是作品,而是作者的人生。AI正以惊人的速度接近人类水平通用智能,让Google从'伦敦那帮疯子在搞AGI'转变为全公司共识。DeepMind让AI'合理地幻觉'来创造突破,就像Astra技术让用户第一次惊呼'AI能做到比想象更多'——这不仅是技术革命,更是重新定义创造力的开始。"
英伟达2025Q1营收440亿美元创纪录,数据中心业务暴涨73%至390亿美元。黄仁勋直言:"中国是全球最大AI市场,出口管制只会让美国失去平台领导权。Blackwell架构推动推理性能提升30倍,微软已部署数万块GPU,AI工厂正成为各国数字基础设施核心。"
来自耶路撒冷希伯来大学的研究团队开发了WHISTRESS,一种创新的无需对齐的句子重音检测方法,能够识别说话者在语音中强调的关键词语。研究者基于Whisper模型增加了重音检测组件,并创建了TINYSTRESS-15K合成数据集用于训练。实验表明,WHISTRESS在多个基准测试中表现优异,甚至展示了强大的零样本泛化能力。这项技术使语音识别系统不仅能理解"说了什么",还能捕捉"如何说"的细微差别,为人机交互带来更自然的体验。
这项研究提出了"力量提示"方法,使视频生成模型能够响应物理力控制信号。研究团队来自布朗大学和谷歌DeepMind,他们通过设计两种力提示——局部点力和全局风力,让模型生成符合物理规律的视频。惊人的是,尽管仅使用约15,000个合成训练样本,模型展现出卓越的泛化能力,能够处理不同材质、几何形状和环境下的力学交互。研究还发现模型具有初步的质量理解能力,相同力量对不同质量物体产生不同影响。这一突破为交互式视频生成和直观世界模型提供了新方向。