当你的数据中心不再适合你的需求时,你该怎么办?
最明显的答案是用替换成新的数据中心。但这可能不是最具成本效益的方法,也肯定不是最可持续的方法。
在某些情况下,更好的解决方案是改造你的数据中心。通过改造,你可以对现有数据中心进行改进,使其更适合你的需求,而无需花费费用和时间来构建替代的数据中心。
什么是数据中心改造?
数据中心改造是对现有数据中心进行重大更改以提高其可用性的过程。
改造可能需要更换主要系统,例如HVAC和电力基础设施,让你的数据中心运行更可靠且更具成本效益。此外,改造还可能涉及重新设计数据中心的布局,以改善气流或在设施中安装更多服务器机架。
从本质上讲,你为了使现有数据中心更有效而进行的任何重大改善都是改造。
改造现有数据中心的优点和缺点
与用新数据中心替换旧数据中心相比,改造的主要优点是改造让你可以继续使用现有的设施,而不必购买新的房产并建造新的数据中心,后者可能要花费数百万美金和数月时间。
从可持续发展的角度来看,数据中心改造也是有益的,因为这么做可以让你延长现有设施的使用寿命,而不是对其进行处置并消耗大量能源去建造新的数据中心。
另一方面,改造也带来了一些重大挑战:
改造适合你吗?
由于存在这些挑战,改造并不总是让数据中心满足新需求的最佳方法,如果你想对数据中心进行非常重大的改造,那么迁移到新设施可能会更好。
但如果你打算改造的规模较小或者仅影响某些系统的话,改造可能是你最好的选择。如果管理得当,改造往往比完全更换数据中心更便宜、更快。
如何改造数据中心?
改造数据中心的过程将根据你要实施哪些变动而有所不同。但总的来说,改造过程是这样的:
当你通过分步计划进行数据中心改造的时候,就可以在这个复杂且耗时的过程中最大限度地降低风险。
结论
在决定你的数据中心需要更换之前,请考虑进行改造。改造并不总是提高数据中心成本效益或满足新要求的最佳解决方案,但如果你想要进行的更改规模有限,那么改造可能是让你的数据中心加快速度的一种更快、更实惠且更可持续的方式。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。