Nvidia公司正在和位于多伦多的初创公司Xanadu Quantum Technologies展开合作,首次实现在超级计算机上运行量子计算模拟。

Nvidia在今天发布的一篇博文中表示,研究人员正在使用最新版本的Xanadu PennyLane在名为“Perlmutter”的超级计算机上模拟量子机器。PennyLane是一个名为“混合量子计算”的开源框架,也就是使用经典计算资源和量子处理器。研究人员将PennyLane与Nvidia cuQuantum软件开发套件结合起来,使其能够模拟由高性能GPU集群驱动的量子机器。
这种高性能是一项关键要求,因为美国能源部布鲁克海文国家实验室的Shinjae Yoo等研究人员表示,需要多达256个GPU才能模拟大约36个量子位——这是真正的量子机器所采用的特有的计算器,而且至关重要的是,这大约是研究人员目前可用量子位数量的两倍。
Nvidia表示,PennyLane的多节点版本将搭配cuQuantum SDK一起使用,以简化加速量子计算机大规模模拟的复杂工作。Yoo表示:“这甚至让我的实习生也可以运行一些最大规模的模拟,的确令人感到兴奋。”他的团队计划将有不少于6个项目将使用PennyLane。
Yoo的研究旨在推进高能物理和机器学习应用,而其他研究人员正在使用模拟量子计算机来扩展他们对化学和材料科学的理解。
量子计算机是一种实验型计算机,依赖于量子力学的特性,有望比经典计算机更为强大,尽管这仍然是一项尚未完全开发的新兴技术,而模拟运算则让研究人员能够在开发过程中开始探索他们的能力。
除了帮助研究人员之外,Xanadu公司还与劳斯莱斯汽车有限公司合作开发量子算法,用于设计更可持续的喷气发动机;与大众集团合作,为电动汽车设计更高效、更强大的电池。
除了Yoo的项目外,国家能源研究科学计算中心的Perlmutter超级计算机至少还在四个项目中利用PennyLane在模拟量子算机。NERSC量子计算项目的负责人Katherine Klymko 表示,研究人员正在使用量子模拟来研究对于传统计算机来说太大的分子复合物。Klymko说:“像PennyLane这样的工具是让他们扩展当前经典功能的关键,为最终在大型计算机上运行算法做好准备。”
Xanadu公司高级量子软件开发人员Lee O’Riordan表示,PennyLane和cuQuantum的结合使可模拟的量子位数量大幅增加成为可能,超出了之前所实现的任何水平。“当我们从2022年开始在单个GPU上使用cuQuantum的时候,我们就几乎全面实现了10倍的加速。我们希望在今年年底之前扩展到1000个节点,也就是4000个GPU,这可能意味着模拟超过40个量子位。”
O’Riordan相信,最终Nvidia cuQuantum和GPU可以帮助模拟相当于60多个量子位,分为30个量子位子电路,甚至更多。
Xanadu的团队仍在收集有关任何可能性的数据,但这项研究看起来很有希望,“根据我们基于样本的工作负载,我们看到的几乎都是线性扩展。”
好文章,需要你的鼓励
大多数用户只使用计算机预装的操作系统直到报废,很少尝试更换系统。即使使用较老版本的Windows或macOS,用户仍可通过开源软件获益。本文建议通过重新安装系统来提升性能,Mac用户可从苹果官方下载各版本系统安装包,PC用户则建议使用纯净版Windows 10 LTSC以获得更长支持周期。文章强调备份数据的重要性,并推荐升级内存和固态硬盘。对于老旧系统,应替换需要联网的内置应用以降低安全风险,定期进行系统维护清理。
新加坡南洋理工大学研究团队提出"棱镜假设",认为图像可像光谱一样分解为不同频率成分,低频承载语义信息,高频包含视觉细节。基于此开发的统一自编码系统UAE,通过频率域分解成功统一了图像理解和生成能力,在多项基准测试中超越现有方法,为构建真正统一的视觉AI系统提供了新思路,有望推动计算机视觉技术向更智能统一的方向发展。
微软杰出工程师Galen Hunt在LinkedIn上宣布,目标是到2030年消除微软所有C和C++代码。公司正结合AI和算法重写最大的代码库,目标是"1名工程师、1个月、100万行代码"。微软已构建强大的代码处理基础设施,利用AI代理和算法指导进行大规模代码修改。该项目旨在将微软最大的C和C++系统翻译为内存安全的Rust语言,以提高软件安全性并消除技术债务。
芝加哥伊利诺伊大学团队提出QuCo-RAG技术,通过检查AI训练数据统计信息而非内部信号来检测AI回答可靠性。该方法采用两阶段验证:预检查问题实体频率,运行时验证事实关联。实验显示准确率提升5-14个百分点,在多个模型上表现稳定,为AI可靠性检测提供了客观可验证的新方案。