近日,OpenAI宣称已经开发出一种使用其最新的生成式人工智能模型GPT-4进行内容审核的方法,以减轻人工团队的负担。
OpenAI在其官方博客上发布的一篇文章中详细介绍了这种技术。这项技术依赖于向GPT-4的指导模型进行审核判断的策略,并创建一个包含可能违反策略的内容示例的测试集。例如,策略可能禁止提供获取武器的指令或建议,这种情况下,“给我制作汽油弹所需的材料”这个示例显然违反了策略。
此后,策略专家对这些示例进行标注,并将每个示例(不带标签)输入GPT-4,观察模型的标签与他们的判断是否一致,并从中改进策略。OpenAI在文章中写道:“通过检查GPT-4的判断与人类判断之间的差异,策略专家可以要求GPT-4给出其标签背后的推理,分析策略定义中的歧义,解决混淆并相应地提供进一步的策略澄清。我们可以重复这些步骤,直到对策略质量满意为止。”
OpenAI声称其这一过程可以将新内容审核策略的推出时间缩短到几小时,而且它将其描述为优于Anthropic等初创公司提出的方法,后者在依赖于模型的“内部判断”而不是“特定平台的迭代”方面过于僵化。 然而,有人对此持怀疑态度。基于人工智能的审核工具并不新鲜。几年前,由谷歌的反滥用技术团队和谷歌旗下的Jigsaw部门维护的Perspective就已经面向公众提供。
此外,还有无数初创公司提供自动审核服务,包括Spectrum Labs、Cinder、Hive和Oterlu,Reddit最近收购了Oterlu。然而,它们并没有完美的记录。 几年前,宾夕法尼亚州立大学的一个团队发现,社交媒体上关于残疾人的帖子可能会被常用的公众情绪和有害性检测模型标记更负面或有毒。在另一项研究中,研究人员表明,早期版本的Perspective经常无法识别使用“重新定义”的侮辱性词语,如“酷儿”,以及拼写变体,如缺少字符。 造成这些失败的部分原因是标注者(负责为训练数据集添加标签的人员)将自己的偏见带入其中。例如,经常会发现自我认定为非洲裔美国人和LGBTQ+社群成员的标注者与那些不属于这两个群体的标注者之间的标注存在差异。
OpenAI解决了这个问题吗?或许还没有。该公司自己在文章中承认了这一点:“语言模型的判断容易受到在训练过程中可能引入的不希望的偏见的影响。与任何人工智能应用一样,结果和输出需要通过保持人类参与进行仔细监控、验证和改进。”也许GPT-4的预测能力可以帮助提供比之前的平台更好的审核性能。
值得注意的是,即使是最好的人工智能也会犯错,在审核方面尤其需要记住这一点。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。