前段时间ChatGPT的出圈,掀起了新一轮AI技术热潮,也带火了AI大模型。在这种热潮下,算力需求爆发成为一个重要的话题。
根据相关机构的预估,到2030年,全球算力规模将是2021年的28倍,其中智能算力将占总算力的94%,是基础算力总量的16倍。
全新的趋势也引发了新的思考:
· 面对智能算力的爆发式增长,数字基础设施如何满足快速增长的高算力需求?
· 作为算力的支撑载体,数据中心又会面临哪些政策和技术的多项挑战?
强监管下面临节能节碳挑战
近年来,在“东数西算”工程、数字经济发展、智能计算中心布局的推动下,我国的数据中心保持了20%的持续增长,去年全国平均功率算力比22W/TF,算力增长速度超过了80%。
随着数据中心规模与功率密度的不断提高,其能耗问题日益突出。在数据中心面临的诸多监管中,“东数西算”工程对数据中心的建设标准更为严格。
平均上架率至少要达到65%以上
对PUE的要求也更为严苛
东部数据中心集群平均PUE小于1.25
西部地区平均PUE小于1.2……
与以往不同的是,对数据中心的监管政策开始兼顾碳使用效率(CUE),在强调节能的同时,要求提升可再生能源使用率,减少用水或无水运行,以此驱动数据中心向高智能、高算力、节能节水、低碳环保的方向发展。
PCUE、SPUE技术难题如何寻解
在落实节能减碳之外,为满足AI大模型算力需求,数据中心还要面对如何提高单位算力的难题。化解这个难题,一方面需要提高单柜功率密度,另一方面需要降低功率算力比,用最少的瓦数实现最大的算力。
微软通过采用算力性能高达5 PFLOPS的英伟达DGX A100服务器,将单柜功率密度提高了3~4倍。其每个机柜放置3台DGX A100服务器,功率达到20 kW,大幅降低了功率算力比,从22W/TFLOPS降到1.3W/TFLOPS,实现了运算效率的提升。
在微软支持GPT的数据中心中,制冷采用的是风冷解决方案。相对而言,浸没式液冷在安全性、稳定性上还存在一些问题,比如,矿物油易燃、氟化液成本高、元器件与冷却液需要做兼容测试等等,不能有效应对数据中心的高温挑战。
此外,尽管通过在机架上多部署服务器可以解决功率密度问题,但是电力系统占地面积也会大幅激增,最终会面临如何摆放的问题。就此而言,AI大模型算力的发展,在技术层面也对数据中心的功率算力使用效率(PCUE)、空间使用效率(SPUE)提出了挑战。
维谛技术2023关键行动计划
在维谛技术(Vertiv,NYSE:VRT)看来,数据中心所面临的挑战,也代表了绿色关键基础设施可持续发展的六个方向,需要根据不同的发展阶段,制定关键基础设施可持续发展战略。
基于相应的战略,维谛技术(Vertiv)围绕供配电、制冷、管理等维度,在产品、技术层面提供具体的实施路径与落地实践。
近期:通过提供动态在线UPS、全变频氟泵空调、能耗管理等方案,打造超低PUE。
中期:通过提供储备一体化UPS、储能空调、AI节能管理等方案,实现新能源和储能的交付。
中远期:通过提供固态变压器、氢燃料电池发电、热回收装置、碳管理,落地微电网和高密度算力。
目前,维谛技术(Vertiv)基于绿色关键基础设施可持续发展的节碳方向,在2023关键行动计划中,重点聚焦可信超低PUE、PUE节能改造+服务4.0、新能源+储能以及微模块智慧边缘解决方案的交付落地。
AI时代,高算力已经成为大模型应用的关键保障。维谛技术(Vertiv)将以不断的技术创新化解行业挑战,从全生命周期角度打造端到端的绿色低碳数据中心,为AI技术发展夯实算力底座。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。