那……能玩《孤岛危机》吗?
现场可编程门阵列(FPGA)的灵活性优势,使其成为智能网卡、电信网络甚至是模拟复古游戏机等多种应用场景下的理想选项。
然而,AMD本周二推出的最新Versal FPGA(收购自赛灵思)可不止能模拟30年前的微处理器。这些成果希望能在芯片制造之前,对其进行全面的仿真、测试和调试。
众所周知,芯片的流片制造成本极其高昂,一旦事后发现设计缺陷则更加致命。AMD Versal系列高级产品线经理Rob Bauer在采访中表示,在新FPGA的帮助下,芯片设计人员可以“在芯片流片之前创建数字孪生,或者为计划推出的ASIC/SoC制作数字版本。他们可以提前验证,在设计周期之内提早尝试软件开发等。”
根据Bauer的解释,随着半导体行业向着2.5D和3D小芯片架构等先进封装技术的过渡,芯片制造商面临的验证压力只会越来越大。“如今的芯片设计师不再仅仅为单一芯片做验证和软件开发,而是要为基于大量小芯片的多晶粒器件做验证和软件开发。”
AMD打造的Versal Premium VP1902正是为此而生。这款大芯片的尺寸约为77 x 77毫米,拥有1850万个逻辑单元(是即将推出的VU19P的两倍)以及用于控制面操作的专用Arm核心,外加用于协助调试的板载网络。
其思路就是将计算和网络功能全部纳入进来,减少I/O、调试或控制面所占用的FPGA逻辑单元,将节约出来的单元更多用于模拟ASIC或SoC。
除了将栅极密度加倍之外,AMD表示这款FPGA还将提供2倍的传输带宽,借此在芯片仿真过程中带来更高的有效云速率。与此同时,该芯片还采用最新的小芯片架构,具体分为4个FPGA块。Bauer表示这将有助于减少数据在芯片内移动时的延迟和拥塞。
虽然这一切看似令人印象深刻,但接触过芯片仿真的朋友都清楚,与在本机硬件上直接运行相比,仿真环境往往效率极低、缓慢且昂贵。AMD的FPGA新构想也无法解决这个问题。
首先,对包含数十亿个晶体管的现代SoC进行仿真是个极耗资源的过程。Bauer表示,根据芯片的具体尺寸和复杂性,可能需要跨多个机架将数十甚至几百个FPGA连接起来。即使如此,与实体芯片的时钟速率相比,仿真系统的性能仍会受到严重限制。
根据AMD的介绍,只需24个FPGA即可模拟10亿个逻辑门;而且在横向扩展之后,最多能够以超过50 MHz的时钟速率支持多达600亿个逻辑门。
Bauer指出,有效时钟速率最终将取决于所涉及的FPGA数量。“假如用户的IP能在单一VP1902内实现,那么性能表现也会更好。”
虽然AMD这款最新FPGA主要面向芯片制造商,但该公司表示本产品也非常适合固件开发与测试、IP块和子系统原型设计、外设验证以及其他各种测试用例。
在兼容性方面,AMD公司表示这款新芯片将与他们之前的FPGA采用相同的底层VIvado ML软件开发套件。AMD还与Cadence、西门子和Synopsys等领先电子设计自动化(EDA)厂商保持合作,增加对该芯片其他高级功能的支持。
AMD的VP1902预计将在今年第三季度起向客户提供样品,并于2024年初正式投放市场。
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。