2023年6月13日 –在近期举办的2023大中华区高管交流大会上, Gartner发布最新调研结果显示,中国企业正在将人工智能项目从原型转向生产,大多数企业已不再纠结于为何需要AI能力,而更加关注AI工程化能力的建设,以数据驱动决策为目标,持续为业务创造价值。一些领先的中国AI企业已经在各个场景中运用生成AI和其他新型AI技术,构建原生AI企业。
尽管CIO们普遍认为AI对业务具有巨大的价值,但董事会成员对AI持有怀疑态度,其实际效果未能达到预期。然而,ChatGPT的推出使得董事会成员和企业高管首次接触到生成AI的巨大潜力,开始相信生成AI能够为业务带来变革和巨大价值。这给CIO们带来了一些焦虑和压力,他们担心错过了生成AI的投资机会。
Gartner发布中国企业人工智能趋势浪潮3.0,旨在帮助企业首席信息官(CIO)更好地规划AI能力,提升业务效果。
守成和创新
目前,中国企业平均已部署超过5个AI用例,每个企业平均已开始部署24个AI用例。虽然许多业务用户或企业高管认为AI只是像安装插件一样简单,但实际上,运营AI涉及数据加工、业务指标梳理、数据集成、业务集成、持续监控和优化等多个环节,需要全局考虑端到端的AI用例和流程。5个中国企业中仅有1个企业的AI能够完全满足业务需求,这也是为什么越来越多的领先企业不再将AI视为单个项目的投入,而是以产品运营和组合运营的方式,从端到端、业务结果导向的角度来整体运营AI,使其在全生命周期中持续产生业务效果。
Gartner高级研究总监方琦表示:“大多数企业会保持现有业务成果,并在有能力的情况下利用生成式AI进行算法改进类的局部创新。对于一些企业而言,进行流程,算法,系统的全局创新可能带来更有价值的应用,但也伴随着较大的风险。在最新的中国企业调研中,有75%的企业认为生成式AI的未来能力可能超过其带来的风险。尽管目前企业对风险的感知较低,但一旦出现风险,可能会对企业造成巨大商誉损失和客户流失。”
平衡风险和价值
在应用生成型AI时,企业往往会规避风险,即在不引起严重后果或潜在争议的情况下使用AI技术。这种谨慎的态度是合理的,但也可能导致错失一些潜在的商业机会。因此,企业需要在实现商业价值和管理风险之间寻求平衡。
Gartner高级研究总监方琦表示:“为了平衡价值和风险,我们应该延续巩固已有投资,持续应对已知的风险,将精力投入到机会或高业务价值低风险的持续投入中。对于高风险低价值的用例,我们应果断地去除它们。同时,我们也可以从创新的角度追逐高业务价值和高风险的用例,通过隐私计算等方式保护用户数据隐私,并通过数据的统计值帮助业务持续实现其价值,打造差异性能力。”
为了确保AI应用的可信度和可解释性,企业应该采取透明度和可解释性的方法,确保AI决策过程的透明度,以及提供对AI决策的解释和辩解能力。在应用生成型AI时,企业需要仔细评估可能涉及的道德、法律和社会问题,并确保符合相关法规和道德标准。通过建立明确的监管和治理框架,企业可以在平衡创新和风险的基础上实现AI的商业潜力。
融合团队
在明确风险和价值之后,我们还需要思考如何选择人才和调整组织架构,以帮助AI战略性地落地。在中国企业落地AI时,超过一半的企业认为人才是最大的挑战。与此相比,在国外只有不到30%的企业认为AI人才是最大的挑战。这可能是因为不同的组织对人才和组织关系的要求不同。领先的机构通常能够整合不同的业务理解、IT技能和数据科学技能,使AI能够更完整、更全面、更有效地落地。
Gartner高级研究总监方琦表示:“在落地AI方面,选择合适的人才是首要任务,但也不能忽视组织架构和企业文化对人才适配的重要作用。通过守成为先、管理风险、择人任势这三个理念,更加战略地规划,落地,运营相应的AI能力。”
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。