蓝色巨人在IBM Cloud中构建起Vela超级计算机,旨在帮助科学家创建并优化新的AI模型。
AI技术离不开强大的性能基础。IBM AI Research一直在研究新的数字与模拟处理器技术,希望借此加速AI处理速度。此次,蓝色巨人宣布在IBM Cloud中构建了一套包含60个机架的大型AI超级计算机,专门支持内部科学家和工程师。这项投资再次证实了AI技术对于研究企业的重要意义。可以想见,IBM未来可能会利用ChatGPT这类工具帮助客户群体、提升服务产品的运行效率。
IBM研究院表示,他们已经在华盛顿特区的IBM Cloud基础设施内部署了一台包含60个机架的超级计算机,专门用于支持基础模型方面的研究。每个节点包含8个英伟达A100 GPU和80 GB HMB。IBM拒绝透露各机架安装有多少个节点,但可以肯定的是蓝色巨人这次是砸下了重金。有趣的是,IBM并没有使用HPC中常见的高成本网络互连,而是轻松通过100 Gb以太网卡承载了各节点间的通信。
Vela超级计算机目前仅供IBM研究院的内部团队成员使用。
IBM还决定设计一个基于虚拟机的集群接口,而没有采用性能水平更高的裸机配置。IBM在博文中解释道,“我们也曾思考,到底要如何在虚拟机内部实现相当于裸机的性能?经过大量研究和发现,我们设计出一种方法,将节点上的所有功能(GPU、CPU、网络和存储)都公开到虚拟机内,这样就能让虚拟化的资源开销低于5%。根据我们无意间了解到的行业情况,这已经是最低水平了。”Vela还被原生集成至IBM Cloud的VPC环境当中,因此AI工作负载可以直接与当前200多种IBM Cloud服务随意对接。
IBM研究人员正在使用这套云端超级计算机,深入探究基础模型的执行和行为方式。最近一段时间,大语言模型已经一次又一次撼动整个行业。OpenAI打造的ChatGPT甚至在很多人眼中成为了AI版本的“iPhone时刻”。这类模型不需要监督,但却要耗费海量算力。例如,由微软Azure托管的OpenAI超级计算机就搭载10000个英伟达GPU。
IBM正使用开源“RAY”处理数据并验证基础模型。
IBM目前正倾注心力,希望帮客户建立起亲自使用这些模型的能力。除了需要占用大量资源的训练环节之外,整体流程中的数据准备、模型调整和推理处理等工作,也都拉高了客户的理解和实施门槛。
IBM关注整个工作流程,希望帮助客户为基础模型的全面普及做好准备。
从下图可以看到,IBM的目标是对特定模型版本进行定制,确保其满足特定业务需求,并将基础模型托管在云端。ChatGPT采用的是GPT3,这套模型自2021年之后就没有重新训练过了。IBM能不能找到可靠的模型更新或定制方法,又回避成本可能高达数百万美元的重新训练?看来蓝色巨人对自己很有信心。
在无监督情况下训练的基础模型,可以针对特定工作负载进行微调。
我们最初听说IBM AI Research时,就对他们在实验室中使用的低精度数字AI处理器,以及用于推理/训练的模拟计算基础研究印象深刻。到现在,我们才真正理解该部门关注此类技术的根本原因:基础模型就是未来,IBM希望引领自己的客户群体在充分的准备之下,大规模拥抱和部署这些模型——可能是客户的本地基础设施中,也可以在IBM Cloud或者其他公有云上。总之,在这个AI模型为王的新时代,IBM表示自己必须占据一席之地。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。