数据中心作为当今数字经济的枢纽作用起到了越来越重要的作用。不论在疫情期间支持各行各业的远程办公、远程协作,还是在百姓日常生活中的衣食住行、办公、就医等大量的业务都走向了线上化、数字化,而这些对于数据中心的稳定性、运维能力都提出了更高要求。
数据中心运维其本质是对数据中心的网络、服务器、以及服务的全生命周期的运营与维护,在成本、稳定性、效率上实现质量可交付的状态。虽然数据中心运维中的很多不确定性都是由小概率事件所引起,但这些不确定的风险让数据中心变得更脆弱,会对整个业务带来极大的破坏。因此,基于算法的IT运维AIOps(Algorithmic IT Operations)运营而生。
英特尔与HPE联合国家再生能源实验室(NREL)展开了AI运维研发合作,运用数据科学和算法优化传统的IT运维任务和流程、进一步简化运维,并取得了卓著的成效。

提升运维效率 依赖高效的计算能力
再生能源实验室(NREL)的AI运维研发一开始就有明确的目标——利用AI和机器学习技术,面向百万兆计算时代的数据中心全面提升运营效率和自动化水平。NREL认为,这将助力NREL引领行业持续提升能源效率,改善可再生能源技术,不断开拓和实践新的方法以降低能耗和运营成本。
为此,NREL正利用采用搭配第三代英特尔® 至强® 可扩展处理器的超级计算机Peregrine,Eagle等设备,通过收集长达五年、数据总量超过16TB的历史数据进行训练异常检测的模型,来预防问题的发生。
英特尔® 至强® 可扩展处理器作为一款集成人工智能加速及硬件增强型安全功能的数据中心级 CPU,其展现出来的优势不言而喻:第三代英特尔® 至强® 可扩展处理器在处理各种人工智能工作负载时较上一代产品有着更高的性能。此外,通过能够简化主流端到端数据科学工具的英特尔优化方案,并在 oneAPI 开放标准支持下,第三代英特尔® 至强® 可扩展处理器让数据中心运维工程师们能够更加快速轻松地打造并广泛部署更智能的模型,更简单地从概念验证阶段 (PoC) 顺利过渡到生产阶段。
确实,NREL迅速获取得了阶段性成果。目前,基于历史数据训练模型已经成功地预测并识别出NREL数据中心即将发生的风险事件,探索出在未来数据中心内使用预测分析的可行性。
这项成果也得到了NREL的高度认可。NREL数据,分析和可视化小组经理Kristin Munch表示:“我们的研究合作将涵盖数据管理,数据分析和AI / ML优化领域,以进行数据中心运营过程中的人工和自动干预。我们希望,通过在现有数据中心内测试这些技术,能够为更高级的智能设施奠定能力基础。”
降低成本,让AI开创更广泛的应用场景
NREL的成功使业界认识到,通过使用由AI驱动的运营,未来百万兆级计算机的运行速度将比目前高出一千倍,并能实现高效率的运营,提高弹性和可靠性,而这正是AI Ops项目建立的初衷。
NREL充分使用开源软件以及TensorFlow、NumPy和Sci-kit库开发机器学习算法在监控、分析、管控以及数据中心运营等场景下帮助数据中心实现更为高效和低成本的运营。同样,英特尔® 至强® 可扩展处理器也成为了省钱利器。英特尔®Speed Select 技术,通过配置一台(而不是多台)服务器就可满足不断变化的工作负载处理需求,从而提高服务器利用率以及总体拥有成本。
此外,通过英特尔® 至强® 可扩展处理器可扩展、灵活、可自定义的优势,让机器学习可以在多个场景帮助运维实现智能化的改造。这包括:在监控方面,可实现实时收集、处理并分析不同来源的IT设施遥测数据;在分析领域,应用大数据分析和机器学习手段,对于来自数据中心内各种设施的数据进行分析; 而在提高管控能力上,通过应用算法赋能机器自动解决各种问题,并智能地使重复性工作自动化,对IT和数据中心设施进行预测性维护;数据中心运营方面则取得了更大成效:AI Ops将进化成为一种验证工具,用于核心IT功能的持续集成(CI)和持续部署(CD)。
未来,高效的计算结合大数据,机器学习等分析技术,通过预防性预测、个性化和动态分析,可增强IT业务技术能力,通过AI调度中心管理和质量、成本、效率优化实现无人值守运维,让运营系统综合效益实现最大化。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。