芯片制造商AMD近日表示,计划把用于芯片设计的部分电子设计自动化(EDA)工作负载转移到谷歌云上,对自身数据中心能力进行扩展。
EDA是芯片设计过程的一个重要组成部分,涉及到使用计算机辅助设计软件来创建印刷电路板、集成电路和微处理器。芯片制造商需要复杂的设计以极高的密度,把元件封装到电路板上,而EDA提供的标准化流程和自动化可以加快开发的速度。
芯片制造商使用EDA软件可以设计、建模、模拟、测试和分析新的电路设计,用于评估性能,并在投入生产之前发现潜藏的任何问题。
AMD表示,EDA的重要性不言而喻,因此也就不难理解为什么AMD希望在谷歌云上运行其中一些工作负载,谷歌云提供的先进的网络、存储和人工智能功能将让AMD从中受益。
AMD进一步解释说,规模、弹性和资源的有效利用在芯片设计过程中至关重要,因此AMD还打算采用谷歌最新的、计算优化的C2D虚拟机实例,这些实例都是运行在AMD第三代AMD EPYC处理器上的。AMD相信,AMD通过采用这些虚拟机可以并性地运行更多设计,从而在管理短期计算需求的方式上,提供更大的灵活性,而不会减少长期项目的资源分配。
AMD公司芯片设计工程副总裁Mydung Pham表示,谷歌云的C2D实例提供了一种新的高性能资源途径,让他的团队能够将计算解决方案与每个EDA工作流程进行混搭和匹配。
谷歌方面强调,AMD将从中受益,例如AMD可以提高灵活性,以最有效的方式运行应用,通过谷歌人工智能和机器学习工具改进设计和操作,以及提供成本和资源消耗方面的透明度。
谷歌云总经理、基础设施副总裁Sachin Gupta表示,云的速度、规模和安全性为AMD等芯片设计公司带来了他们急需的灵活性。
好文章,需要你的鼓励
这项研究提出了R1-Searcher++框架,通过两阶段训练策略使大语言模型能像人类一样灵活利用内部知识和外部信息。该方法创新性地采用强化学习激励模型优先使用内部知识,并引入记忆机制将检索到的信息转化为内部知识,实现动态知识获取。实验表明,R1-Searcher++不仅在多步问答任务上表现优异,还大幅减少了检索次数,显著提高了推理效率。
这项研究提出了AutoRefine,一种革新性的强化学习框架,为大语言模型引入了"边思考边搜索和完善"的全新范式。与传统方法不同,AutoRefine在连续搜索调用之间添加知识完善步骤,让模型能够有效过滤和组织信息。通过结合答案正确性和检索质量双重奖励,该方法在七项问答基准测试中平均提升6.9%的准确率,特别在复杂多跳推理场景中表现突出,解决了现有检索增强推理的核心局限性。
这项研究揭示了一种新型网络安全威胁:利用普通网络广告攻击AI网页代理。中科院研究团队开发的AdInject攻击无需特殊权限,仅通过精心设计的广告内容就能误导AI代理点击恶意链接,成功率高达90%以上。研究使用严格的黑盒模型,更符合现实场景,暴露了当前AI代理面临的实际安全漏洞。实验还表明,即使添加专门的防御提示,这类攻击仍能成功率超过50%,凸显了设计更强大防御机制的紧迫性。
东北大学与快手科技联合研发的UNITE系统为多模态信息检索带来突破性进展。这项发表于2025年5月的研究首次系统分析了模态特定数据如何影响检索性能,并提出创新的模态感知掩码对比学习技术,有效解决不同模态间的竞争关系。UNITE能同时处理文本、图像、视频及其组合,在40多项测试中超越现有方法,即使与参数规模更大的模型相比也表现出色。研究发现视频-文本对在通用检索中表现优异,而文本-文本和文本-图像对对指令遵循任务至关重要,为未来多模态系统研究提供了宝贵指南。