IMG Series4 NNA帮助先进的AI软件大幅提升图像和视频的分辨率
英国伦敦 - 2022年5月17日 - Imagination Technologies与Visidon Oy联合推动移动、数字电视和汽车市场的嵌入式应用向基于深度学习的超分辨率过渡。凭借这项人工智能(AI)技术,用户可以通过先进的算法将低分辨率图像和视频的分辨率提高到4K和8K。IMG Series4 NNA能够在系统级芯片严格的功耗和散热要求下,以更高的效率实时完成此类苛刻的流程。
Imagination的IMG Series4神经网络加速器(NNA)通过其Tensor Tiling技术为先进的AI图像处理软件带来强大的计算性能与领先的能效。结合Visidon在深度学习视频增强网络领域的专业知识,该解决方案能够帮助原设备制造商将尖端AI增强技术应用于图像修复和着色,通过上采样(up-sampling),将低分辨率源数据还原为高分辨输出,大幅降低视频传输带宽。。
Visidon首席技术官Matti Niskanen表示:“Visidon解决方案的两大支柱是高能效和高性能。我们十分惊喜地看到我们的深度学习网络能够在Imagination的IMG Series4 NNA上如此轻松地运行,同时也被处理高计算工作负载时所保持的整体能效所震撼。我们希望双方能够进一步深化合作,共同开辟AI超分辨率技术的未来。”
Imagination产品管理总监Gilberto Rodriguez表示:“Imagination和Visidon都在保证性能和功耗的前提下构建技术。我们十分高兴能够与Visidon共同推动先进AI图像处理技术的发展,使原设备制造商能够使用领先的IP和软件提供超分辨率应用。希望我们两家公司的合作将为移动、数字电视和汽车系统级芯片领域的创新带来新的机会。”
IMG Series4 AI计算引擎采用Tensor Tiling技术,能够在系统带宽低并且需要高推理速度的情况下运行Visidon超分辨率解决方案组合中的主要算法——卷积神经网络。
Visidon开发了一套基于深度学习的超分辨率网络,可将视频传输的分辨率升级和修复到现代显示器要求的4K(2160p)和8K(4320p)分辨率。Visidon超分辨率技术在保留图像细节的同时,增加视频帧尺寸,实现了优于行业标准放大算法的超高输出质量。Visidon一般通过将超分辨率与降噪技术相结合来避免噪点的增加,同时保留逼真的细节与清晰度。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。