富士通日前与Atmonia签署协议,为开发催化剂提供高性能计算(HPC)和人工智能(AI)技术,以推动氨的清洁生产。氨常被认为是化石燃料的替代品。
Atmonia是冰岛的一家初创公司,主打开发可持续的氨气生产流程。Atmonia与富士通的协议涉及一项联合研究项目,目的是加速催化剂的开发,富士通提供的高性能计算技术将在开发中发挥作用。
富士通表示将开发高速模拟技术并利用HPC技术进行量子化学模拟,以促进新催化剂的发现,并将研究人工智能技术,为合成氨发现新材料和新的候选催化剂。
我们曾向富士通询问过有关该项目使用HPC和AI技术的具体细节。富士通告诉我们,“HPC元素包括利用超级计算机加快计算速度促成实现量子化学模拟的技术。我们在进行计算时要用上富士通超级计算机PRIMEHPC FX700,并配备我们的Arm A64FX芯片。”
富士通上个月曾宣布已开发出世界上最快的量子模拟器,能够模拟36量子的系统,该量子模拟器在PRIMEHPC FX700节点集群上运行,但不清楚该量子模拟器和Atmonia合作是否使用的是同一技术。
而富士通当时还表示过正在与开发商QunaSys公司合作,将QunaSys公司的量子化学计算软件Qamuy引入到旗下的量子模拟器,达到加快各种量子化学计算的目的。
关于与Atmonia合作项目的人工智能部分,富士通公司告诉我们,这方面的技术包括“提高催化剂搜索的效率,其方法是通过从大量的模拟结果确定催化剂原子的类型和位置以及反应能量等各项之间的因果关系”。该说辞倒是很好地描述了目标,但却没有说明富士通使用什么技术实现这些结果。
Atmonia表示,根据协议Atmonia将提供来自模拟和实验的数据,这些数据涉及到催化剂候选项和氮还原反应的反应环境。Atmonia实质上是提供选择模拟方法的技术诀窍并验证各种发现新材料的开发技术。
两家公司表示将致力于建立一种清洁的氨生产方法,而氨则可以作为可持续的肥料或作为燃烧剂,终极目标是为实现零碳排放的努力做贡献。
据Atmonia公司称,氨是一种潜在可行的化石燃料替代品,因为氨燃烧时不会排放二氧化碳,而且氨比氢气更容易运输,而且,已经出现了以氨为燃料的发动机设计。但目前商业化的氨生产主要依赖Haber-Bosch工艺,Haber-Bosch工艺要用到来自化石燃料的氢气,Haber-Bosch工艺本身也会产生大量的二氧化碳。
Atmonia到目前为止已经研究出了新的方法,只需要用水、空气中的氮气和清洁电力就可以生产氨。当然,Atmonia并非是这样想的唯一一家公司,其他公司也在向着类似的目标前进,但用的工艺则不一定相同。
Atmonia公司表示,Atmonia的目标是开发新的催化剂,利用水的质子和空气中的氮气生产氨,与富士通的合作协议可以提高Atmonia研究催化剂的效率,各种量子化学反应可以通过一些测试进行计算模拟。
好文章,需要你的鼓励
这项研究探讨了具身智能体(如机器人)如何通过记忆为用户提供个性化服务。宜远大学研究团队开发了MEMENTO评估框架,通过两阶段设计评估智能体利用记忆的能力。研究将个性化知识分为物体语义(如"我最喜欢的杯子")和用户模式(如"早餐习惯")两类。实验表明,即使是GPT-4o等前沿模型在需要综合多记忆的任务中也表现出30.5%的性能下降,特别是在理解用户模式方面存在明显挑战。
这项研究提出了一种创新的"生命长久安全对齐"框架,使大语言模型能够持续适应不断进化的越狱攻击策略。框架核心是元攻击者与防御者之间的对抗演化循环:元攻击者不断发现新的攻击策略,防御者则学习抵御这些攻击。实验表明,经过两轮迭代后,防御者成功将攻击成功率从73%降至7%,同时保持了模型的有用性。这种动态进化方法相比传统静态安全对齐更有效,为构建持续安全的大语言模型提供了新方向。
Enigmata是一项突破性研究,通过合成可验证的拼图训练大语言模型的逻辑推理能力。该研究创建了包含36种任务、7大类推理能力的完整训练系统,每项任务都配备了可控难度生成器和自动验证器。基于此训练的Qwen2.5-32B-Enigmata模型在拼图推理基准上超越了o3-mini-high和o1等顶尖模型。更令人惊喜的是,当应用于更大规模模型时,这些拼图数据不仅提升了模型解决拼图的能力,还意外增强了其数学和STEM推理能力,展示了纯逻辑训练带来的广泛泛化优势。
这项来自新加坡国立大学等机构的研究引入了REASONMAP,一个用于评估多模态大语言模型细粒度视觉理解能力的基准测试。研究团队使用来自13个国家30个城市的高分辨率交通地图,构建了1,008个问答对,设计了两级评估框架测量答案的正确性和质量。对15个流行模型的评估揭示了一个意外发现:开源领域的基础模型表现优于推理型模型,而闭源模型则相反。研究还表明,当视觉输入被遮盖时,模型性能普遍下降,证明真正的细粒度视觉推理任务仍需要有效整合多模态信息。