IBM公司在无光刻芯片制造方向上取得可喜进展。
IBM公司已经设计出一种新型材料加工与制造工艺,有助于提高7纳米节点以及更小节点芯片的生产效率水平。
蓝色巨人的研究人员正在努力克服“区域选择性沉积”这一新兴领域中的种种挑战,此项技术有望克服光刻技术的限制,从而利用7纳米制程工艺在芯片上创建图案。
Semi Engineering对于光刻图案做出了简洁说明,同时亦解读了为何区域选择性沉积技术在7纳米制程领域拥有如此光明的发展前景(https://semiengineering.com/what-happened-to-selective-deposition/,英文原文)。
“多重图案化”等技术的介入,有助于确保集成电路的规模不断扩展。然而,随着芯片由28纳米制程缩小至7纳米制程,芯片制造商无疑需要面对更多且功能且特征更复杂的分层,且特征必须更精确地放置在对应图案之上。
这些特征需要在不同层之间保持对齐,一旦无法保持对齐,就会导致“边缘放置错误”(简称EPE)。英特尔公司光刻技术专家Yan Borodovsky认为这是一项光刻技术无法解决的挑战,并最终会成为摩尔定律的硬性天花板。
2015年,他曾鼓励业界研究区域选择性沉积技术,而这正是IBM公司研究人员正在探索的领域,且有朝一日可能成为EUV光刻技术的继承性方案。事实上,三星公司已经进行了数十年实验室研究,目前正在尝试将其引入实际生产线。
各晶圆代工厂已经在利用某种形式的选择性沉积技术在器件的金属表面上进行材料沉积。但不同于此,区域选择性沉积要求配合新的工具,旨在于器件之上沉积不同的材料组合——金属沉积于金属上,电介质沉积于电介质上。
IBM公司阿尔马登研究中心研究员Rudy J Wojtecki解释称,IBM的项目希望对这一技术加以改进:
“如果使用传统制造方法,我们需要利用抗蚀剂涂覆基板,而后通过曝光步骤对抗蚀剂进行图案化处理,从而实现图案显影、沉积无机膜,而后去除抗蚀剂以制造出图案化无机材料。”
“我们发现了一种更简单的无机薄膜沉积方法,即使用自对准工艺。我们将预先涂覆的基板浸入含有特殊材料的溶液当中,而后将涂覆基板放置于沉积室中,这实际上能够以纳米级可控方式在器件上生长出元件。”
该小组目前使用的为三大主要区域选择性沉积方法之一,名为“原子层沉积”。该方法的重点,在于利用“自聚合单分子层”(简称SAM)。
这种方法可能有助于为新的硬件形式铺平道路,特别是三维结构等能够更好支持人工智能应用程序的硬件形式。
Wojtecki解释称,“一旦我们开发出这一过程的扩展性方法,我们即可在构建下一代硬件时开始采用——包括将其应用于新型人工智能硬件,或者7纳米技术节点或者更小技术节点的器件制造流程。”
IBM公司并不是唯一一家着力开发区域选择性原子层沉积技术的企业,不过Wojtecki认为他将能够为具有苛刻要求的应用定制化学结构,从而使得这种“新聚合、材料与表征方法”的开发最终具备可扩展能力。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。