如今,数字化增长速度远超企业、个人的想象力。IDC报告指出,到2020年,50%的中国2000强制造业企业,将会依靠数字化平台来增加他们对生态系统和体验的投资,并支持其总收入的30%。从全球来看,去年67%的全球TOP1000企业已经将数字化转型作为公司战略的核心。
埃森哲分析报告也指出,从2000年开始到现在,在全球500强企业中有50%的消失企业是因为它们没有抓住数字化转型的机遇。IDC的分析报告也指出,未来如果不重视数字化转型,五百强企业中三分之一的企业将慢慢出局。
在企业数字化转型的道路上,IT基础设施是必不可少的重要支撑。近几年来,随着企业数字化转型进程的推进,IT基础设施正在发生重要变革,而混合云、网络虚拟化、分布式存储等等成为这轮变革的关键词。
戴尔易安信中国区企业级产品总监周俊杰认为,数字化转型过程中,企业IT基础设施变革面临的挑战主要有三个:
第一个挑战是海量数据。今天的数据增长是几何式增长,周俊杰做了个比喻,数据的产生跟拉面一样,是成几何级数的增长,数据的产生速度非常快,数据量变得非常大。因此对企业来讲,其IT基础设施的数据处理能力面临很大的挑战。
第二个挑战是数据快速增长。这对企业的IT系统在处理数据存储和管理方面的扩展能力提出新的挑战。
第三个挑战是数据多样化。多年前企业面对的主要是结构化数据,企业仅仅依托数据库来查找、分类、索引,做一些非常传统的数据处理。而现在,80%的数据都是非结构化的数据,或者是半结构化的数据,如图片、视频、导航路线、轨迹,或者是IOT等设备数据。
而这些挑战对企业IT基础架构的计算力、存储能力和网络传输能力都提出新的挑战。他建议,企业应该从数据处理能力、架构的扩展性以及混合云的部署来实现企业的IT架构升级从而顺利实现企业的数字化转型。
“企业数字化转型过程是一个复杂的过程,戴尔易安信具备能提供一个企业级端到端的解决方案部署的能力,来帮助企业构建现代化的数据中心以及基于混合云架构的解决方案,最终实现帮助企业数字化成功转型,获得企业竞争力。“周俊杰总结说。
以数据驱动的新工业革命时代已经到来,面向未来的新思潮、新思想、新思考正在不断产生,每一个企业、机构都感受到了转型和创新的迫切性。在这种情况下,我们需要开放思想,跨界思维,踊跃构建新的IT平台,积极布局新的商业模式。
2018年8月17日,由英特尔主办的《英特尔数字化创新行业峰会》将在北京金隅喜来登酒店举行。此次会议邀请100多位领导、行业专家、大型企业客户,以及40位媒体参与活动。来自英特尔的嘉宾、Forrester分析师、京东云总裁申元庆、知名学者、商业思想家吴伯凡等进行了主题分享。
英特尔数字化创新行业峰会是数字化转型的创新会议。大会将邀请英特尔相关嘉宾分享英特尔对于数字化转型与创新的最新洞察,深层次阐释英特尔最新产品及技术的诸多应用,同时来自中国互联网领域的标杆企业,和大中型企业代表用户一起,共同分享他们的技术和商业创新实践。
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。