IBM正在寻求让自己的大型机更适合于现代数据中心。
IBM近日公布了两款小型化的大型机型号,并表示这两款型号在公有云或私有云环境中部署要比上一代传统大型系统更容易。
第一个新系统是以z14 Model ZR1(如图)命名的,基于一种单框架设计,IBM说这种设计可以装入以前用于容纳常规服务器相同的标准19英寸数据中心机架。
ZR1在IBM早期Z13大型机基础上进行了多项重大改进,吞吐量提高10%,配置高达8TB的内存,是上一代的2倍。计算则由3个10核心处理器执行,据称可以达到5.2GHz的主频。
IBM表示,这些芯片提供足够的计算能力来运行多达330,000个容器。依赖大型机的大企业正在越来越多地使用软件容器,这让开发人员将应用组件跨不同类型基础架构捆绑到轻量级的软件包中。
企业也可以利用ZR1每天处理高达8.5亿次加密交易。大型机在金融领域的应用尤其广泛,IBM表示全球50强银行中有44家银行依赖IBM的Z系列系统。
IBM表示,ZR1支持标准冷却和动力设备,这一特点旨在让ZR1相比Z14更易于部署,后者需要复杂的三相电源供电。此外,ZR1机箱拥有16个机架的可用空间,可容纳网络设备和辅助设备,从而释放数据中心的占地空间。
IBM推出的另一款大型机新型号是基于Linux的Rockhopper II,该系统专为运行Linux开源操作系统而设计,可以像ZR1一样安装在19英寸机架中,并提供类似的规格。该型号是IBM在2015年与Ubuntu合作推出的大型机的最新版本。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。