思科公司推出了8223路由系统的两种配置版本以及Silicon One P200芯片。这家网络设备巨头表示,这些工具将提升企业日益增长的AI工作负载需求的处理能力。
8223系统为AI工作负载提供了51.2 Tbps以太网固定路由器,P200芯片能够实现超过3 EB/s的互连带宽规模。思科表示,这些升级将允许超大规模云服务商和企业客户通过互连数据中心共享大规模AI工作负载,实现"横向扩展"。
HyperFrame Research副总裁兼网络和基础设施分析师Ron Westfall告诉Data Center Knowledge:"核心创新在于实现横向扩展架构,这使得AI集群能够可靠、安全地分布在相距数百英里的多个数据中心,这是必要的,因为超大规模云服务商在传统的纵向扩展或横向扩展方法上正面临物理空间和电力容量不足的问题。"
竞争优势
新设备直接对标Arista、Juniper、Broadcom和英伟达的竞争产品。虽然大多数这些系统主要针对单一数据中心内的扩展,但英伟达的Xpectrum-XGS同样针对横向扩展工作负载。
Dell'Oro Group副总裁兼分析师Semeh Boujelbene表示,思科专注于深度缓冲,允许存储更大量的数据包以避免网络拥塞,这是与竞争对手的关键差异化因素。
Boujelbene在接受Data Center Knowledge电子邮件采访时说:"思科的方法专注于深度缓冲设计,基于网络故障不可避免的观点……深度缓冲充当关键的缓冲器,维持性能和稳定性。相比之下,英伟达认为深度缓冲会引入不必要的延迟,应该尽可能避免。"
功耗节省和覆盖范围
思科还依靠更高的能效、长距离覆盖和增强的安全性来获得竞争优势,因为各公司正在竞相寻找增强解决方案以满足AI工作负载对功耗的巨大需求。Westfall表示,思科的新系统"解决了大数据中心迁移的关键挑战,其特点是对物理空间的巨大需求。超大规模设施现在需要数百英亩的廉价土地,而在人口密集的城市和郊区中心根本找不到这样的土地。"
思科硬件高级副总裁Rakesh Chopra表示,公司专注于在监控可用功率的同时满足需求。
"功率是行业的根本约束,"他在接受Data Center Knowledge采访时说。"这是目前推动所有决策的因素。这迫使我们跨数据中心扩展,以便继续扩展工作负载。"
Chopra表示,速度、覆盖范围和安全性将使新路由系统脱颖而出。"没有其他人拥有51.2 Tbps路由器——没有人能够达到这个水平,即使他们有了,也无法赶上,"Chopra说。
思科声称新系统相比前几代产品功耗降低了65%。"一旦竞争对手真的赶上了,它们的能效也不会接近我们讨论的水平,"Chopra说。
思科将立即开始发货新路由系统,首先面向超大规模云服务商推出。
Q&A
Q1:思科8223路由系统有什么特别之处?
A:思科8223路由系统为AI工作负载提供51.2 Tbps以太网固定路由器,配合P200芯片能够实现超过3 EB/s的互连带宽规模。其核心创新是实现横向扩展架构,使AI集群能够可靠、安全地分布在相距数百英里的多个数据中心,并且相比前几代产品功耗降低了65%。
Q2:思科的深度缓冲技术与竞争对手有什么不同?
A:思科专注于深度缓冲设计,允许存储更大量的数据包以避免网络拥塞,深度缓冲充当关键的缓冲器来维持性能和稳定性。而英伟达等竞争对手认为深度缓冲会引入不必要的延迟,应该尽可能避免,这是两种不同的技术理念。
Q3:为什么数据中心需要横向扩展架构?
A:因为超大规模云服务商在传统的纵向扩展或横向扩展方法上正面临物理空间和电力容量不足的问题。功率是行业的根本约束,推动着所有决策。超大规模设施现在需要数百英亩的廉价土地,而在人口密集的城市和郊区中心根本找不到这样的土地,因此需要跨数据中心扩展工作负载。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。