随着AI数据中心规模不断扩大,云计算公司面临一个新问题:如何有效利用现有的小型数据中心?博通公司提供了一个解决方案,特别是针对地理位置相对接近的数据中心。
博通于周一发布了新版Jericho网络芯片,该芯片能够以更高速度传输更大容量的数据。据博通核心交换业务集团高级副总裁兼总经理Ram Velaga介绍,客户可以通过这款芯片将多个小型数据中心连接起来,创建一个大型系统来开发或运行AI模型。
博通表示,Jericho4产品能够连接超过100万个处理器,覆盖多个数据中心,处理的信息量比前一代产品高出约四倍。
博通一直受益于AI系统建设设备的需求增长。其网络组件,如路由器和交换机,负责在图形处理单元(GPU)之间传输数据,而GPU是用于创建AI模型的昂贵芯片。
虽然博通的部分设备用于在同一机架或数据中心建筑内部传输数据,但市场也需要能够跨建筑甚至更远距离工作的组件。此外,大型GPU集群的功耗变得过大,无法将它们全部保持在同一位置,Velaga说。
"当他们试图建立20万个GPU甚至10万个GPU的集群时,很快就会达到300兆瓦的功耗,而目前单个物理建筑内无法提供300兆瓦的电力,"Velaga表示。他说,Jericho系列网络芯片将有助于解决这个问题。
企业也在尝试将数据中心容量迁移到更靠近客户的位置,以帮助加快用户从AI模型获得答案的速度。这意味着云计算和AI企业需要利用位于拥挤都市区的数据中心,在这些地区连接多个较小的设施可能更为实用,Velaga说。
博通的Tomahawk系列可以连接数据中心内的机架,但这些距离通常在一公里以下,Velaga说。而Jericho设备可以处理超过100公里的距离。
Velaga表示,Jericho4将于周一开始向云服务提供商和网络设备制造商等早期客户发货,这些客户将把芯片集成到他们的产品中。他说,完全部署大约需要九个月时间。
Q&A
Q1:Jericho4芯片的主要功能是什么?
A:Jericho4是博通发布的新版网络芯片,能够以更高速度传输更大容量的数据,可以连接超过100万个处理器,覆盖多个数据中心,处理的信息量比前一代产品高出约四倍,主要用于将多个小型数据中心连接成一个大型AI系统。
Q2:为什么需要连接多个数据中心来运行AI模型?
A:主要原因是大型GPU集群的功耗过大。当建立20万个或10万个GPU的集群时,功耗会达到300兆瓦,而目前单个物理建筑内无法提供如此大的电力供应,因此需要将GPU分布在多个数据中心中。
Q3:Jericho4与Tomahawk系列芯片有什么区别?
A:两者的主要区别在于连接距离。Tomahawk系列主要用于连接数据中心内的机架,距离通常在一公里以下,而Jericho4设备可以处理超过100公里的远距离连接,适用于跨建筑甚至更远距离的数据传输。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。