Brad Theilman 面对镜头,背景中 Felix Wang 正在拆封一批新的 SpiNNaker2 计算核心。 这项成果是 Sandia 与 SpiNNcloud 合作的产物,将成为双方合作推出的全球首个商业产品。 此项目由 NNSA 的 Advanced Simulation and Computing (ASC) 项目资助,旨在探索如何利用神经形态计算支持国家核威慑任务。 SpiNNaker 为 “Spiking Neural Network Architecture” 的缩写,是一款受大脑启发而设计的神经形态计算机,专用于大规模、实时模拟类脑应用。 该技术不仅能模拟大规模类脑网络,增进科研人员对大脑的理解,同时也为检验当前计算能力的极限提供了一个框架。 图片由 Craig Fritz 拍摄。
桑迪亚国家实验室已启动其 SpiNNaker 2 “类脑”超算,该系统摒弃了 GPU 与内部存储。
该系统由德国 SpiNNcloud 提供,将位居前五名的 “类脑”平台之列,其模拟的神经元数量介于 1.5 亿至 1.8 亿之间。
这一架构最初由 Arm 先驱 Steve Furber 开发,虽然其神经元数量明显低于人脑的 1000 亿神经元。
正如 SpiNNcloud 解释的那样,SpiNNaker 2 的高度并行架构在每块服务器板上集成 48 枚 SpiNNaker 2 芯片,每枚芯片均配备 152 个基于核心和专用加速器。
每枚芯片配备 20 MB 的 SRAM,每块板上配置 96 GB 的外部 LPDDR4 内存。 因此,一套 90 块板的系统总共拥有 8640 GB 的 DRAM,而一套 1440 块板的系统则拥有 69120 枚芯片和 138240 TB 的 DRAM。
毋庸置疑,该系统采用高速芯片间通信。 SpiNNcloud 表示,这一设计连同庞大的内存容量,共同消除了对集中式存储的需求。
DRAM 加速
对于桑迪亚来说,他们已接收到一套由 24 块板、175000 个核心构成的系统。 据 SpiNNcloud 介绍,“这台超算已接入现有的 HPC 系统,且内部不包含操作系统或磁盘。其速度优势在于数据始终保存在 SRAM 和 DRAM 中。”
标准的平行以太网端口“足以加载/保存数据。” SpiNNcloud 还表示,“当前最大系统”拥有超过 10500000 个核心,这意味着其能够实现生物学意义上的实时运算。
此外,与 GPU 系统相比,该系统在能效上更为出色,能够支持复杂事件驱动的计算和模拟。
SpiNNcloud 联合创始人兼 CEO Hector A. Gonzalez 表示,该系统将主要针对“下一代国防及其他领域”中的问题。 SpiNNaker2 的效率提升使其特别适合满足国家安全应用中对计算性能的严苛需求。
好文章,需要你的鼓励
研究显示,英国中小企业虽占企业总数99.9%,但因资源与专业不足,难以有效应对网络攻击。CyCOS项目旨在通过构建支持社区,帮助中小企业提升网络防御能力。
这项研究提出了一种名为"词汇偏向水印"(LBW)的新方法,专为自回归图像生成模型设计,能够抵抗传统水印技术容易被删除的重生成攻击。研究团队将代币库分为绿色和红色列表,通过软硬两种偏向策略鼓励模型在生成过程中选择绿色列表中的代币,并采用多绿色列表策略增强安全性。实验表明,LBW在多种攻击下展现出卓越的稳健性,尤其是在面对重生成攻击时表现突出,为AI生成内容的可追溯性提供了更可靠的技术保障。
Wispr 的 Flow 是一款创新的 iOS 语音输入软件,借助 AI 技术能将语音无缝转换为精美文字,每周免费 2000 字,支持 100 多种语言,并能实现多设备同步。
南方科技大学林剑满团队开创性提出DGAD模型,解决通用物体组合中几何编辑与外观保持的双重挑战。该方法首先利用语义嵌入隐式捕捉物体几何特性,再通过密集交叉注意力机制精确对齐外观特征,成功实现物体在任意场景中的灵活编辑同时保持细节不变。实验表明,DGAD在编辑灵活性和外观保真度上均优于现有技术,为AR/VR内容创建等应用提供了强大工具。