Brad Theilman 面对镜头,背景中 Felix Wang 正在拆封一批新的 SpiNNaker2 计算核心。 这项成果是 Sandia 与 SpiNNcloud 合作的产物,将成为双方合作推出的全球首个商业产品。 此项目由 NNSA 的 Advanced Simulation and Computing (ASC) 项目资助,旨在探索如何利用神经形态计算支持国家核威慑任务。 SpiNNaker 为 “Spiking Neural Network Architecture” 的缩写,是一款受大脑启发而设计的神经形态计算机,专用于大规模、实时模拟类脑应用。 该技术不仅能模拟大规模类脑网络,增进科研人员对大脑的理解,同时也为检验当前计算能力的极限提供了一个框架。 图片由 Craig Fritz 拍摄。
桑迪亚国家实验室已启动其 SpiNNaker 2 “类脑”超算,该系统摒弃了 GPU 与内部存储。
该系统由德国 SpiNNcloud 提供,将位居前五名的 “类脑”平台之列,其模拟的神经元数量介于 1.5 亿至 1.8 亿之间。
这一架构最初由 Arm 先驱 Steve Furber 开发,虽然其神经元数量明显低于人脑的 1000 亿神经元。
正如 SpiNNcloud 解释的那样,SpiNNaker 2 的高度并行架构在每块服务器板上集成 48 枚 SpiNNaker 2 芯片,每枚芯片均配备 152 个基于核心和专用加速器。
每枚芯片配备 20 MB 的 SRAM,每块板上配置 96 GB 的外部 LPDDR4 内存。 因此,一套 90 块板的系统总共拥有 8640 GB 的 DRAM,而一套 1440 块板的系统则拥有 69120 枚芯片和 138240 TB 的 DRAM。
毋庸置疑,该系统采用高速芯片间通信。 SpiNNcloud 表示,这一设计连同庞大的内存容量,共同消除了对集中式存储的需求。
DRAM 加速
对于桑迪亚来说,他们已接收到一套由 24 块板、175000 个核心构成的系统。 据 SpiNNcloud 介绍,“这台超算已接入现有的 HPC 系统,且内部不包含操作系统或磁盘。其速度优势在于数据始终保存在 SRAM 和 DRAM 中。”
标准的平行以太网端口“足以加载/保存数据。” SpiNNcloud 还表示,“当前最大系统”拥有超过 10500000 个核心,这意味着其能够实现生物学意义上的实时运算。
此外,与 GPU 系统相比,该系统在能效上更为出色,能够支持复杂事件驱动的计算和模拟。
SpiNNcloud 联合创始人兼 CEO Hector A. Gonzalez 表示,该系统将主要针对“下一代国防及其他领域”中的问题。 SpiNNaker2 的效率提升使其特别适合满足国家安全应用中对计算性能的严苛需求。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
哈佛大学研究团队开发出LangSplatV2系统,实现了超高速3D语言查询功能。该系统通过创新的稀疏编码技术和高效渲染算法,将3D场景语言理解速度提升了47倍,达到每秒384帧的实时处理能力。系统采用全局语义字典和稀疏系数表示,彻底解决了传统方法中解码器速度瓶颈问题,为AR/VR、智能机器人等应用提供了强大的技术基础。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
马里兰大学研究团队提出了CoLa(Chain-of-Layers)方法,让AI模型能够根据任务难度动态调整内部层的使用策略,实现"快思考"和"慢思考"的灵活切换。通过蒙特卡洛树搜索算法,该方法在推理任务上显著提升了模型的准确性和效率,为75%的正确答案找到了更短的处理路径,并纠正了60%的错误答案,为AI模型的架构优化开辟了新方向。