人形机器人技术正成为科技界最炙手可热的领域,全球涌现数十家初创企业,吸引着数十亿美元的新投资。但投资者仍在寻找完美的应用场景,也就是机器人技术的进步能够契合更广泛市场的经济需求的领域。
IEEE高级会员Ayanna Howard表示:“这中间存在很大的差距,当我考虑机器人的可部署性时,我也会考虑成本问题。”
Howard是在《华尔街日报》的《Bold Names》播客节目中发表上述言论的。节目主持人兼科技专栏作家Christopher Mims指出,“在美国,一些对人工智能未来发展做决策的最具影响力的人物都愿意倾听Howard的见解。”
这是一场引人入胜且内容广泛的讨论,涉及该领域的重大进展、机器人技术与生成式人工智能的融合,以及当前该技术的局限性,包括缺乏支持机器人广泛部署的数字基础设施等问题。
Howard说:“如果你在虚拟环境中与人工智能相连,而网络带宽又不给力,那你只需等上几秒,答案就会出来。但在机器人领域,如果丢失了一秒钟的信息,就可能导致机器人摔倒或者伤到别人。所以我认为,我们面临这样一个脱节的问题:我们是否拥有能在不到一毫秒、甚至纳秒的时间内完成操作且不丢失任何连接的基础设施呢?我们目前还没有真正解决这个问题。”
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
微软研究院发布突破性多语言AI技术UPDESH,通过"自下而上"数据生成策略,让AI真正理解不同文化背景下的语言表达。该技术基于各语言维基百科内容生成950万个训练数据点,覆盖13种印度语言,显著提升低资源语言AI性能,为构建文化敏感型AI系统提供新路径。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
NVIDIA团队提出RLBFF方法,将AI训练中的复杂评价转化为明确的二元判断标准,解决了传统人类反馈模糊和可验证奖励局限的问题。该方法在多个权威测试中取得突破性成果,其中JudgeBench获得第一名,训练的模型性能媲美知名商业模型但成本仅为其5%,为AI训练领域带来重要方法论创新。