人形机器人技术正成为科技界最炙手可热的领域,全球涌现数十家初创企业,吸引着数十亿美元的新投资。但投资者仍在寻找完美的应用场景,也就是机器人技术的进步能够契合更广泛市场的经济需求的领域。
IEEE高级会员Ayanna Howard表示:“这中间存在很大的差距,当我考虑机器人的可部署性时,我也会考虑成本问题。”
Howard是在《华尔街日报》的《Bold Names》播客节目中发表上述言论的。节目主持人兼科技专栏作家Christopher Mims指出,“在美国,一些对人工智能未来发展做决策的最具影响力的人物都愿意倾听Howard的见解。”
这是一场引人入胜且内容广泛的讨论,涉及该领域的重大进展、机器人技术与生成式人工智能的融合,以及当前该技术的局限性,包括缺乏支持机器人广泛部署的数字基础设施等问题。
Howard说:“如果你在虚拟环境中与人工智能相连,而网络带宽又不给力,那你只需等上几秒,答案就会出来。但在机器人领域,如果丢失了一秒钟的信息,就可能导致机器人摔倒或者伤到别人。所以我认为,我们面临这样一个脱节的问题:我们是否拥有能在不到一毫秒、甚至纳秒的时间内完成操作且不丢失任何连接的基础设施呢?我们目前还没有真正解决这个问题。”
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。