"对 Blackwell 产能提升的担忧是合理的,但我们现在已经成功提升了 Blackwell 的产能," Nvidia CEO Jensen Huang 在财报发布后接受 CNBC 采访时表示。
Huang 补充说,他认为 Nvidia "已经成功度过了" 投资者担心的客户从 Hopper 向 Blackwell 过渡期间的需求真空期。
"我们下个季度会有不错的业绩表现。而且我们有相当充足的 Blackwell 需求管线,"Huang 说道。
Jefferies 分析师在周四的研报中指出,"供应链将继续改善",他们"没有看到任何 Blackwell 需求问题的迹象"。
在财报公布之前,尽管中国 AI 初创公司 DeepSeek 带来了冲击波,分析师们仍然乐观地认为,随着 Blackwell 产能的提升,这家芯片制造商将超越预期并提高展望。
"Nvidia 股票最近因 DeepSeek 和 AI 需求将下降的说法而受挫,但事实证明这些担忧是没有根据的,因为客户们继续竞相扩大 AI 基础设施规模,主要使用 Nvidia 芯片,"Thornburg Investment Management 的投资组合经理 Sean Sun 在与 Quartz 分享的评论中表示。
研究公司 Radio Free Mobile 创始人 Richard Windsor 也在与 Quartz 分享的评论中表示,他不认为 DeepSeek 会"打击对 Nvidia 数据中心芯片的需求"。
Windsor 表示,这家芯片制造商对本财年的预期"看起来相当准确,再加上我认为公司具有良好的可见度,意味着今年不会有太多意外"。
与此同时,Sun 表示,投资者对 Nvidia 顶级客户设计自有定制芯片的担忧"似乎有些过度"。"Nvidia 的生态系统优势和软件技术栈仍然是进入市场的强大壁垒。"
在财报后的电话会议上,Nvidia 表示,像 OpenAI 和 Google 这样的公司正在竞争的推理 AI 模型"与单次推理相比,每个任务可能需要 100 倍的计算量"。
Sun 表示,该公司"独特地positioned于捕获这种指数级增长的机会"。
好文章,需要你的鼓励
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
MiroMind AI等机构联合研究团队提出了UniME-V2多模态嵌入学习新方法,通过让大型多模态语言模型充当"智能法官"来评估训练样本质量,解决了传统方法在负样本多样性和语义理解精度方面的问题。该方法引入软标签训练框架和困难负样本挖掘技术,在MMEB基准测试中取得显著性能提升,特别在组合式检索任务上表现出色,为多模态AI应用的准确性和用户体验改进提供了重要技术支撑。
亚马逊云服务宣布投资500亿美元,专门为美国政府构建AI高性能计算基础设施。该项目将新增1.3千兆瓦算力,扩大政府机构对AWS AI服务的访问,包括Amazon SageMaker、Amazon Bedrock和Claude聊天机器人等。预计2026年开工建设。AWS CEO表示此举将彻底改变联邦机构利用超级计算的方式,消除技术障碍,助力美国在AI时代保持领先地位。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。