如果你听说过深度伪造(deepfakes),即人们做着从未做过的事或者说着从未说过的话的高度逼真视频,你可能会认为这是一种可疑的技术发展成果。例如,它们可能被用于高级网络钓鱼诈骗中来冒充企业高管,在这类诈骗中,虚假语音邮件被用来向员工索要紧急资金。深度伪造技术逐渐进入我们的生活,在带来惊喜和便利的同时,也暴露出一系列风险隐患,饱受争议。
它们的存在引发了大量识别它们的方法的研究。
但深度伪造并非一无是处。事实上,它们可以被用于有益的用途。
它们可以让跨国企业的高管用员工的母语传达信息,实时翻译演讲内容并且口型与所说的话相匹配。它们被用于创建逼真的模拟场景以促进员工发展,或者让历史人物重现生机,从而让学校里的复杂话题更通俗易懂。
为何研究人员需要“有益的”深度伪造技术
医学领域是有益的深度伪造技术的最大使用者之一。这些深度伪造技术通常被用于为机器学习程序创建额外的训练数据。例如,当研究人员训练人工智能(AI)在诸如磁共振成像(MRI)或X射线等医学影像中检测某些类型的癌症时,他们可能会使用深度伪造技术来为其数据集添加更多影像。
这是必要的,因为许多数据集规模较小或者不完整。训练人工智能模型需要对细节一丝不苟,需要大量的人工干预来标记数据集的某些特征。有时,扫描结果标记不正确或者标记不一致,因为不同的人使用了不同的标准。这些问题可能会使人工智能模型更难以准确学习。生成合成数据有助于克服这些挑战,不过合成数据的质量也必须得到仔细监控。
制作深度伪造(作品)变得更容易了
IEEE高级会员Vivekanandhan Muthulingam表示:“虽然多年来制作深度伪造(作品)的技术变得更容易获取了,但这仍然需要一定水平的专业知识。”
Muthulingam说:“现在有一些用户友好型的工具和应用程序可供使用,这些工具和应用程序让个人在没有广泛编程知识的情况下就可以尝试制作深度伪造(作品)。然而,要获得高质量的成果仍然需要对机器学习原理和视频编辑有更深入的理解。”
制作这些深度伪造(作品)的人也需要了解相关的主题内容。
IEEE会士Houbing Song说:“要制作‘有益的’深度伪造(作品),既需要人工智能知识,也需要专业领域知识。”
伦理考量
专家警告说,仅仅因为深度伪造是出于善意目的而创建的,并不能免除伦理责任。负责任地使用它们意味着要诚实,并设置保护措施以支持学习和创新,同时又不危及信任或安全。在训练数据方面可能也存在伦理考量,这些数据可能涉及版权或知识产权主张,或者是因为担心将患者信息用于训练数据。
也可能存在一些灰色地带,在这些地带深度伪造的价值并非一目了然。
Song说:“一个深度伪造作品是好是坏将取决于其益处与社会期望的契合程度。从长远来看,如果我们善用深度伪造技术,那么该技术的益处将超过风险。”
好文章,需要你的鼓励
四川大学研究团队发现,当前先进的AI模型在面对信息不完整的数学问题时,缺乏主动询问澄清信息的能力,更倾向于基于假设给出答案。
中南大学等机构联合发布TextAtlas5M数据集,包含500万图像-文本对,专门解决AI长文本图像生成难题。该数据集平均文本长度148.82词,远超现有数据集,涵盖广告、学术、教育等真实场景。配套的TextAtlasEval基准测试显示,即使最先进的商业模型也面临显著挑战,为AI图像生成技术指明了新的发展方向。
从11岁就梦想造人形机器人的Bernt Bornich,用'huggable'形容他的Neo Gamma机器人——这个能举起150磅的66磅'运动员',正以家庭为试验场突破AI学习瓶颈:'工厂20小时就触及学习天花板,而家庭环境的多样性才是通往AGI的钥匙'。
剑桥大学研究团队创建了史上最难的AI视觉测试ZeroBench,包含100道精心设计的视觉推理题目。在这项测试中,包括GPT-4o、Claude、Gemini在内的20个全球最先进AI模型全部得了0分,暴露了当前AI在基础视觉理解上的严重缺陷。研究发现AI主要在计数、空间推理等基础任务上失败,而非逻辑推理能力不足。