英特尔发布了扩展产品组合和新的合作伙伴关系,旨在加速汽车制造商向电动和软件定义汽车 (SDV) 的转型。其中包括与亚马逊云服务 (AWS) 共同开发的汽车虚拟开发环境。
这家芯片巨头在 CES 2025 上展示的行业方案旨在解决汽车制造商在成本和性能扩展方面的挑战,实现更快速、更高效和更具盈利性的 SDV 开发和部署。英特尔表示,现在可以提供完整的整车平台解决方案,包括高性能计算、独立显卡、人工智能、电源管理和分区控制器产品。
进一步来看,英特尔表示完整的整车平台可以减少传统分散式车辆架构的低效问题,优化车辆的整体电子架构可以带来显著的成本降低和性能提升。
重要公告之一是基于 AWS 的英特尔汽车虚拟开发环境。这两家 IT 巨头将其描述为确保从云端到汽车的真正硬件和软件对等性的方式。该产品旨在解决整个车辆开发生命周期中的挑战,使工程师能够在虚拟和物理硬件设置之间切换。
该环境集成了基于英特尔至强处理器的 Amazon EC2 实例,并首次在 AWS 环境中引入英特尔汽车 SDV 系统芯片,目标是消除对昂贵的电子控制单元模拟器或开发板的需求。两家公司认为他们的合作提供了统一的服务,可以加速创新、降低研发成本并缩短上市时间。
为支持新平台,英特尔还推出了自适应控制单元 (ACU),该单元专为电动汽车动力系统和分区控制器应用而设计,旨在缓解传统基于时间和顺序处理的微控制器和分区控制器由于确定性处理能力有限而难以处理多个工作负载的问题。
ACU U310 支持将多个实时、安全关键和网络安全功能、应用和域(一芯多用)整合到单个芯片中。新的 ACU 系列集成了灵活的逻辑区域,将实时控制算法从 CPU 核心中卸载,即使将多个微控制器工作负载整合到单个分区控制单元中,也能提供可靠的性能、无干扰和确定性数据传输。声称可实现更大的工作负载整合、更低的成本以及增强的安全性、网络安全性和性能。
汽车企业已经在研究这项技术。Stellantis 赛车运动部门已选择英特尔作为关键技术合作伙伴,在其下一代逆变器控制中采用自适应控制技术,以提高竞速环境中的性能和效率。在这一实施中,英特尔技术将控制电动机并在制动阶段回收能量。逆变器在一场电动方程式比赛中发挥着关键作用,任何效率的提升都能转化为宝贵的竞争优势。
在另一个应用中,Karma Automotive 将支持英特尔的 ACU,展示了一款英特尔联合品牌逆变器,该逆变器具有最优脉冲模式控制算法,可提高效率并支持四种独特的驾驶模式,包括扭矩纹波降低和续航里程提升等创新功能。
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
Feedzai团队首次系统评估了AI模型理解散点图的能力,创建了包含18,000张图表的大规模数据集。测试十个先进AI模型发现,在简单计数任务中部分模型准确率超90%,但精确定位任务表现不佳,准确率多在50%以下。研究还发现图表设计对AI性能有轻微影响,为AI辅助数据分析提供了重要参考。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
KAIST研究团队开发出MG-Select系统,首次让视觉语言机器人具备"货比三家"的决策能力。该系统通过生成多个行动候选方案并利用内部评估机制选择最优解,无需额外外部验证系统。在真实世界测试中,机器人精确操作成功率提升28%-35%,某些任务改进达168%,为机器人在医疗、制造等高精度应用领域的发展奠定重要基础。