研究人员正在努力研发更小型、更紧凑的人工智能系统,以解决人工智能系统对数据日益增长的需求所带来的一系列挑战。而且,不只是如今新闻报道中的生成式人工智能模型需要变得更小,那些能够运营工业设施、智慧城市或自动驾驶汽车的人工智能系统也需要如此。

大型人工智能模型面临的挑战
当你使用人工智能(无论是在手机还是笔记本电脑上)时,大部分实际计算都发生在数据中心。这是因为最流行的人工智能模型在计算上非常耗费资源——你的笔记本电脑可能没有足够的计算能力来运行查询。这些人工智能系统还会消耗大量能源。据说,在生成式人工智能模型中进行一次查询(例如问“生成式人工智能是如何工作的?”这样一个问题)所消耗的电量相当于一个灯泡点亮一小时的电量。
这给人工智能的使用带来了两个挑战。首先,这引发了人们对人工智能可持续性的担忧,因为为人工智能供电的电力也会增加温室气体排放。
在最近一项针对全球技术领导者的调查“The Impact of Technology in 2025 and Beyond: an IEEE Global Study”中,35%的人表示人工智能的实用性远远超过其能耗,而34%的人表示人工智能的能耗和实用性处于良好的平衡状态。大约五分之一(21%)的人认为人工智能的益处是显著的,但高能耗仍然是一个问题,而8%的人认为大量的能耗超过了人工智能的益处。
其次,这意味着任何依赖人工智能的事物要么需要更多的电力来运行,要么需要连接到数据中心。
削减人工智能规模的前沿技术正在取得一些成功(https://spectrum.ieee.org/1-bit-llm)。
IEEE会员Jay Shah表示:“这些(技术)耗电量显著降低,通常在瓦特范围内运行,而不是大型数据中心系统消耗的千瓦或兆瓦。”
谁需要紧凑型人工智能?
更小、更节能的人工智能系统可以用于多种应用,比如自动驾驶汽车。
Shah说:“就长期可靠性和降低功耗而言,下一代低功耗人工智能加速器对自动驾驶汽车的未来至关重要。它们能够实现实时决策并实现更紧凑的设计。”
同时,它们对机器人系统来说也是个福音,因为它们将降低机器人的电力需求。
IEEE高级会员Cristiane Agra Pimentel表示,紧凑型人工智能系统在工业环境中也将很有用,在这种环境中,更小的控制系统可以使工厂流程自动化。
Pimentel说:“在工业领域使用紧凑型人工智能将越来越适用于机器操作控制、产品追溯控制和供应链系统管理。”
小型人工智能存在权衡取舍
大型语言模型通常适用于多种用途。它们可以协助撰写大学论文,还能帮你构建网站。紧凑型系统可以针对特定系统进行优化。它们可以被设计成公司的聊天机器人或者自动补全计算机代码。
但是,紧凑型人工智能系统目前准确性较低,因为它们通常使用较少的数据。
Shah表示:“考虑到低功耗、更快的推理时间以及在边缘设备上运行人工智能的能力等好处,这些权衡通常是可以接受的。研究人员和开发人员会继续努力提高紧凑型人工智能系统的准确性,同时保持其效率优势。”
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。