11 月 14 日,安森美 (onsemi) 和伍尔特电子(Würth Elektronik)宣布,伍尔特电子的无源元件数据库已集成到安森美独特的 PLECS® 模型自助生成工具 (SSPMG) 中。SSPMG 是基于 Web 的平台,界面直观、简单易用,能够帮助工程师针对复杂的电力电子应用定制高精度、高保真 PLECS 模型,从而尽早发现和修复设计过程中的性能瓶颈。而伍尔特电子的无源系统元件的集成,进一步提高了 SSPMG 中开关损耗模型的精度。
行业典型的 PLECS 模型依赖于实验室配置和环境,往往无法准确反映各种元件特性(如导通、能量损耗和热阻抗)在实际应用中的真实情况。相比之下,SSPMG 的功能基于安森美的物理可扩展 SPICE(侧重于集成电路的仿真程序)模型,根植于半导体物理学和元件制造中的实际工艺变化,能够更准确地体现元件在电路中的表现。
安森美电源方案事业群建模与仿真方案研究员 James Victory 博士表示:“通过使用SSPMG ,安森美的客户能够自主生成适合其特定电源应用的系统级 PLECS 模型,同时不再受制于漫长且成本高昂的制造周期,而是可以通过虚拟方式开发和优化完整的电源系统,从而大大缩短产品上市时间。”
伍尔特电子欧洲战略合作关系经理 Dayana Cómbita 表示:“伍尔特电子的 SPICE 模型数据库已经无缝集成到安森美的 SSPMG 中,设计工程师现在可以为其应用选择安森美的有源元件和伍尔特电子的无源元件,生成精度更高的开关损耗模型。通过携手合作,为我们的共同客户打造一条一次性成功并经过优化的系统设计之路。”
客户可以下载 SSPMG 损耗模型,然后用于其专有仿真平台,或上传到安森美领先行业的 Elite Power 仿真工具 (EPS)。EPS 能为客户直接展示使用安森美的 EliteSiC 系列产品、PowerTrench® T10 MOSFET、FS7 IGBT 以及智能功率模块(IPM) 等器件来构建电路拓扑的性能表现。
好文章,需要你的鼓励
本文介绍了 Agentic AI 的概念、特点及应用,强调其自主决策、分解任务与执行复杂目标的能力,并探讨了应用场景与潜在风险。
这项研究提出了一种名为"词汇偏向水印"(LBW)的新方法,专为自回归图像生成模型设计,能够抵抗传统水印技术容易被删除的重生成攻击。研究团队将代币库分为绿色和红色列表,通过软硬两种偏向策略鼓励模型在生成过程中选择绿色列表中的代币,并采用多绿色列表策略增强安全性。实验表明,LBW在多种攻击下展现出卓越的稳健性,尤其是在面对重生成攻击时表现突出,为AI生成内容的可追溯性提供了更可靠的技术保障。
本篇文章以 Navin Chaddha 的采访为主线,阐述了 AI 技术背后人际伙伴关系和早期合作的重要性,以及“协同智能即服务”的理念,强调未来创新依旧由人类主导,技术只是辅助工具。
南方科技大学林剑满团队开创性提出DGAD模型,解决通用物体组合中几何编辑与外观保持的双重挑战。该方法首先利用语义嵌入隐式捕捉物体几何特性,再通过密集交叉注意力机制精确对齐外观特征,成功实现物体在任意场景中的灵活编辑同时保持细节不变。实验表明,DGAD在编辑灵活性和外观保真度上均优于现有技术,为AR/VR内容创建等应用提供了强大工具。