11 月 14 日,安森美 (onsemi) 和伍尔特电子(Würth Elektronik)宣布,伍尔特电子的无源元件数据库已集成到安森美独特的 PLECS® 模型自助生成工具 (SSPMG) 中。SSPMG 是基于 Web 的平台,界面直观、简单易用,能够帮助工程师针对复杂的电力电子应用定制高精度、高保真 PLECS 模型,从而尽早发现和修复设计过程中的性能瓶颈。而伍尔特电子的无源系统元件的集成,进一步提高了 SSPMG 中开关损耗模型的精度。
行业典型的 PLECS 模型依赖于实验室配置和环境,往往无法准确反映各种元件特性(如导通、能量损耗和热阻抗)在实际应用中的真实情况。相比之下,SSPMG 的功能基于安森美的物理可扩展 SPICE(侧重于集成电路的仿真程序)模型,根植于半导体物理学和元件制造中的实际工艺变化,能够更准确地体现元件在电路中的表现。
安森美电源方案事业群建模与仿真方案研究员 James Victory 博士表示:“通过使用SSPMG ,安森美的客户能够自主生成适合其特定电源应用的系统级 PLECS 模型,同时不再受制于漫长且成本高昂的制造周期,而是可以通过虚拟方式开发和优化完整的电源系统,从而大大缩短产品上市时间。”
伍尔特电子欧洲战略合作关系经理 Dayana Cómbita 表示:“伍尔特电子的 SPICE 模型数据库已经无缝集成到安森美的 SSPMG 中,设计工程师现在可以为其应用选择安森美的有源元件和伍尔特电子的无源元件,生成精度更高的开关损耗模型。通过携手合作,为我们的共同客户打造一条一次性成功并经过优化的系统设计之路。”
客户可以下载 SSPMG 损耗模型,然后用于其专有仿真平台,或上传到安森美领先行业的 Elite Power 仿真工具 (EPS)。EPS 能为客户直接展示使用安森美的 EliteSiC 系列产品、PowerTrench® T10 MOSFET、FS7 IGBT 以及智能功率模块(IPM) 等器件来构建电路拓扑的性能表现。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。