IBM商业价值研究院日前发布一份长达28页题为“大型机是数字化转型的支柱”的报告。报告发现,79%的IT高管都认为大型主机对于实现人工智能驱动的创新至关重要。报告指出,经过六十年的发展,大型机已成为存储和处理大量关键业务数据的支柱。在企业开始人工智能驱动数字化转型之旅之际,大型机将在提升数据价值方面发挥关键作用。
IBM 的担忧似乎在于,大型机用户不应该假定现代、生成性人工智能工作负载只是可以在公共云和/或企业数据中心中的 x86 和 GPU 服务器上运行。大型机同样也可以运行这一类的人工智能工作负载。
笔者在出版前有幸读了这份报告。报告的着笔点是大型机-公有云-边缘的混合方法,需将工作负载放在最合适的平台上。人工智能可用于加速大型机应用程序现代化、增强事务性工作负载和改善大型机运营。报告称,“将企业内部大型机与超大规模机相结合,可以创建一种集成运营模式。这种运营模式可以实现敏捷实践和促进应用程序之间的互操作性。”
报告建议大型机用户“利用人工智能获取交易之间的洞察,以增强业务用例,包括欺诈检测、反洗钱、信贷决策、产品推荐、动态定价和情感分析”。
大型机性能可以提升基于规则的人工智能信用评分,一家北美银行在公共云仅对20%的信用卡交易进行评分,每笔交易耗时80毫秒,而将应用程序迁移到大型机上则能够实现100%信用卡交易的评分,每秒可处理15,000笔交易,每笔交易耗时2毫秒,预计每年可节省2000万美元的防欺诈支出。
大型机配备了嵌入式片上人工智能加速器,“可以扩展到以极低的延迟每秒处理数百万个推理请求,这对于交易型人工智能用例(如检测支付欺诈)尤为重要” 。IBM表示,“传统人工智能可用于评估银行支付是否存在欺诈行为,而大型语言模型(LLM)则可用于提高预测的准确性。”
IBM 的 Ensemble AI (组合人工智能)方法就是这样做的:将现有的机器学习模型与更新的 LLM 结合起来。
人工智能可用于改善大型机管理。报告发现,“74% 的高管认为,将人工智能整合到大型机运营中并改变系统管理和维护非常重要。基于人工智能的自动化、预测分析、自我修复和自我调整等功能可以主动检测和预防问题,优化工作流程,提高系统的可靠性。”
大型机可以利用人工智能进行监控、分析、检测和应对网络威胁。此外,生成式人工智能大型语言模型和代码助手可以加速旧编码语言(Cobol)的工作,例如转换为 Java 和 JCL 开发,从而“通过使开发人员能够更快、更高效地实现现代化或构建应用程序,缩小大型机的技能差距”。
IBM 将在 2025 年推出的下一代 z16 大型机中采用人工智能专用 DPU(数据处理单元),从而实现人工智能处理卸载的方法。该系统将配备多达 32 个 Telum II 处理器,支持以 24 TOPS 的速度进行片上人工智能推理加速。Spyre 加速器将增加 32 个人工智能加速器核和 1GB DRAM,其性能与 Telum II 片上人工智能加速器相当。在下一代大型机中,最多可以与Telum II单元一起使用8个人工智能加速器。
不过,蓝色巨人并未打算在旗下大型机架构中添加 GPU。推理工作负载将在大型机上有效运行,但人工智能训练工作负载则不然。我们可以期待 IBM 会有一些实现进行大型机矢量化和矢量数据库功能的安排,以支持推理工作负载中的检索增强生成(RAG)。
对于笔者而言,为大型机添加 GPU 是一个重要的终极目标,原因是大型机配备了 GPU 就打开了在大型机这个经典的大型平台上运行人工智能训练工作负载的大门。或许,GPU 协处理器的概念将成为 z17 大型机的卖点。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。