领导AMD芯片开发部门的高管Jack Huynh在今天发表的 Tom's Hardware 采访中透露了这一计划。
AMD提供两类显卡。第一类面向企业市场,使用的是名为CDNA 3的架构。该架构经过优化,可运行人工智能软件,尤其是大型语言模型。
人工智能模型在做出决策时会进行一些计算,其中涉及一些值为零的数据点。CDNA 3 可以将这些数据压缩成更紧凑的形式,从而减少GPU处理能力的使用,加快计算速度。该架构还包括其他几项旨在加快人工智能工作负载的优化。
反过来,AMD消费级GPU的设计针对的是电子游戏而非LLM,它们采用了名为RDNA 3的架构。该设计有别于CNDA 3的一个特点是它能更好地支持光线追踪技术,这是许多电子游戏用来渲染光影效果的一种技术。
在今天的采访中,Huynh透露AMD计划将RDNA和CDNA合并为一个芯片架构。这一未来技术将成为公司所有GPU的基础。他列举了决定统一设计的三个主要原因。
第一个原因是,开发一种而不是两种GPU架构将使 AMD的工程部门的运作更有效率。Huynh表示,改变方向背后的另一个因素是,该公司消费级GPU的架构RDNA有一定的设计限制。这些限制使得AMD的工程师在升级该架构的内存组件时面临挑战。
Huynh表示,芯片架构统一也将使第三方开发者受益。为一种芯片架构优化应用比为两种架构优化应用更简单,这将减轻软件团队的工作。
Huynh 还透露了AMD在高端消费级 GPU 市场的最新计划。该市场目前的领跑者是竞争对手英伟达,英伟达估计占芯片出货量的88%。AMD占据剩下的12%。
Huynh表示,AMD今后将优先考虑低成本显卡。该公司计划先扩大在这一市场的份额,然后再重新聚焦与英伟达的高端消费级GPU竞争。Huynh解释说,这一决定与开发人员的采用状况有关。
消费级GPU的需求水平在很大程度上受到针对其进行了运行优化的电子游戏数量的影响。AMD相信,提高其在低端 GPU 市场的份额将说服更多的开发商为其芯片优化游戏。一旦建立起这样的市场基础,AMD就能更好地在高端 GPU 领域与英伟达展开竞争。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。