GPUDirect Storage(GDS)旨在通过使用直接指向NVMe存储驱动器的IO绕过存储服务器/阵列控制器的主机操作系统及CPU/内存,从而加快读写访问速度。

目前,各供应商已经公布了自己的GDS性能,为客户提供了一种能够比较其优劣的方法:
我们整理了过去几年总计十家供应商发布的结果,具体如上图所示。随着AI市场的发展成熟,训练和推理类工作负载之间也出现了应用差异。除了RAG和向量搜索的兴起之外,市场上还出现了AI数据管线的概念。当今AI存储必须能够支撑整条管线中的各个阶段,特别是满足推理和训练负载对于数据访问的需求。
考虑到这一点,英伟达最顶尖的GPU服务器DGX SuperPOD列出了经过认证的存储供应商。要想入围这份名单,供应商们要做的已经不仅仅是将数据调整传输至GPU。传输带宽虽然非常重要,但已经不是唯一关键的指标。据我们了解,想要从单一节点层级衡量GPUDIrect性能并不靠谱,正确的方法应该更加全面,即考量能否具备一定的性能水平让SuperPOD保持高负荷运转,同时满足英伟达提出的延迟标准、持续性能水平、支持数千张GPU的可扩展性、大规模AI数据集处理以及系统与软件兼容性要求。
这里强调的性能,已经不单单指GDS带宽。可扩展性同样至关重要。Pure Storage公司高级总监Hari Kannan在采访中表示,“我们正在推进英伟达SuperPOD认证,而且认证内容主要集中在性能层面。毕竟这也是SuperPOD的意义所在——必须保证在极高规模下仍拥有出色的性能表现。为此,我们必须与英伟达分享自己的性能基准。他们也开展了自己的性能测试,以验证其是否符合他们提出的SuperPOD基准。”不过具体基准内容尚未公开。
目前已经有四家SuperPOD存储供应商通过了认证,分别为:DDN及其A³I A1400X2T Lustre阵列;IBM及其Storage Scale System 6000、NetApp及其运行BeeGFS的EF600,以及VAST Data及其Data Platform数据平台。这四家供应商均提供并行文件系统访问能力。
上图所示,为IBM获得的英伟达SuperPOD认证函。可以看到其中单个SSS6000的读取速度就高达340 GB/秒,写入速度则高达175 GB/秒。
计划支持SuperPOD的存储供应商还包括戴尔的PowerScale、Pure Storage以及WEKA的WEKApod。
戴尔正着手在Lightning项目当中为其PowerScale OneFS操作系统添加并行文件系统支持。这也许有助于其满足SuperPOD提出的性能与可扩展性要求。
据我们了解,Hitachi Vantara的VSP One存储已经获得了BasePOD认证,下一步希望通过SuperPOD认证。我们也就SuperPOD认证一事询问了NetApp及其ONTAP AFF阵列,并将在得到回复后向大家报告。
MinIO公司表示,其开源DataPOD对象存储方案能够扩展以支持任意数量的GPU服务器。但据我们了解,该公司并不打算通过SuperPOD认证。此项认证主要面向文件系统存储,即使底层基于对象存储,也至少需要在应用层表现为文件系统的形式。
SuperPOD存储认证更像是一种衡量是否合格的兼容性测试,而非能够量化的基准测试。而从英伟达的市场利益的角度出发,最好是能有更多存储供应商顺利通过SuperPOD数据访问认证。如此一来,客户就不必比对公开发布的SuperPOD性能基准测试,再从中选取速度最快的存储供应商。总之,这种不公开SuperPOD存储性能数据、而单纯以是否通过认证来衡量的方式,更有利于英伟达团结更多合作厂商。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。