StormCast是早期大气预测模型CorrDiff的升级版。英伟达将后者的算法与Earth-2结合在一起,Earth-2是英伟达为使用其芯片进行研究的气象学家提供的一套软件。这套软件包括天气预报算法、大气数据管理工具和相关组件。
StormCast基于CorrDiff模型,CorrDiff的功能相当于一个气象放大工具。研究人员可以上传25公里分辨率的数据集,描述天气事件。在这样的分辨率下,25公里以下的大气现象是不可见的。CorrDiff可以将原始数据的分辨率提高12.5倍,达到两公里。
StormCast增加了自回归功能,以此增强了模型的核心功能。这一升级使该人工智能不仅能研究过去的天气事件,还能预测未来的发展。StormCast通过研究历史大气信息生成预测结果,历史信息包括英伟达纳入模型训练数据集的美国中部地区两年半的气候测量数据。
StormCast的自动回归功能使研究人员能够预测未来六小时内的天气。英伟达的气候模拟研究主管Mike Pritchard在一篇博文中详细介绍说:“StormCast可以在3公里的小时尺度上实现这一功能。”
StormCast旨在预测所谓的中尺度天气事件。这些大气现象的覆盖面积从五公里到几百公里不等。除其他外,中尺度天气还包括山洪暴发和能够造成大面积风灾的持久风暴。普通风暴不属于中尺度事件,因为它们影响的范围要小得多。
气象学家通常使用一种名为 “对流允许模型 (CAM)”的算法来预测天气。这种算法通常在超级计算机上运行,并考虑到多达数千个大气参数来生成预测结果。英伟达表示,已经证明在某些情况下,StormCast有能力超越CAM软件。
Pritchard详细介绍说:“尽管该模型还处于起步阶段,但当它与降水雷达一起应用时,已经可以提前六小时提供预报,准确率比美国国家海洋和大气管理局(NOAA)最先进的3公里尺度CAM高出10%。”
其他公司也在研究如何利用人工智能改进天气预报。去年11月,谷歌推出了GraphCast,这是一个内部开发的神经网络,可以比传统算法更快地预测大气事件。它可以提前10天预报天气,并提供详细的温度和风速预估。
好文章,需要你的鼓励
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
欧洲太空通信产业发展迅猛。乌克兰Kyivstar获得监管批准测试Starlink直连手机服务,完成了与星链卫星网络的SIM卡集成测试,计划2025年第四季度推出支持短信和OTT消息的D2C服务。同时,CTO宣布即将发射首个再生5G毫米波载荷,其J-1任务旨在演示轨道超高速低延迟5G传输。该公司正构建超低轨道星座,使用5G毫米波频谱提供高速低延迟连接。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。