StormCast是早期大气预测模型CorrDiff的升级版。英伟达将后者的算法与Earth-2结合在一起,Earth-2是英伟达为使用其芯片进行研究的气象学家提供的一套软件。这套软件包括天气预报算法、大气数据管理工具和相关组件。
StormCast基于CorrDiff模型,CorrDiff的功能相当于一个气象放大工具。研究人员可以上传25公里分辨率的数据集,描述天气事件。在这样的分辨率下,25公里以下的大气现象是不可见的。CorrDiff可以将原始数据的分辨率提高12.5倍,达到两公里。
StormCast增加了自回归功能,以此增强了模型的核心功能。这一升级使该人工智能不仅能研究过去的天气事件,还能预测未来的发展。StormCast通过研究历史大气信息生成预测结果,历史信息包括英伟达纳入模型训练数据集的美国中部地区两年半的气候测量数据。
StormCast的自动回归功能使研究人员能够预测未来六小时内的天气。英伟达的气候模拟研究主管Mike Pritchard在一篇博文中详细介绍说:“StormCast可以在3公里的小时尺度上实现这一功能。”
StormCast旨在预测所谓的中尺度天气事件。这些大气现象的覆盖面积从五公里到几百公里不等。除其他外,中尺度天气还包括山洪暴发和能够造成大面积风灾的持久风暴。普通风暴不属于中尺度事件,因为它们影响的范围要小得多。
气象学家通常使用一种名为 “对流允许模型 (CAM)”的算法来预测天气。这种算法通常在超级计算机上运行,并考虑到多达数千个大气参数来生成预测结果。英伟达表示,已经证明在某些情况下,StormCast有能力超越CAM软件。
Pritchard详细介绍说:“尽管该模型还处于起步阶段,但当它与降水雷达一起应用时,已经可以提前六小时提供预报,准确率比美国国家海洋和大气管理局(NOAA)最先进的3公里尺度CAM高出10%。”
其他公司也在研究如何利用人工智能改进天气预报。去年11月,谷歌推出了GraphCast,这是一个内部开发的神经网络,可以比传统算法更快地预测大气事件。它可以提前10天预报天气,并提供详细的温度和风速预估。
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。