StormCast是早期大气预测模型CorrDiff的升级版。英伟达将后者的算法与Earth-2结合在一起,Earth-2是英伟达为使用其芯片进行研究的气象学家提供的一套软件。这套软件包括天气预报算法、大气数据管理工具和相关组件。
StormCast基于CorrDiff模型,CorrDiff的功能相当于一个气象放大工具。研究人员可以上传25公里分辨率的数据集,描述天气事件。在这样的分辨率下,25公里以下的大气现象是不可见的。CorrDiff可以将原始数据的分辨率提高12.5倍,达到两公里。
StormCast增加了自回归功能,以此增强了模型的核心功能。这一升级使该人工智能不仅能研究过去的天气事件,还能预测未来的发展。StormCast通过研究历史大气信息生成预测结果,历史信息包括英伟达纳入模型训练数据集的美国中部地区两年半的气候测量数据。
StormCast的自动回归功能使研究人员能够预测未来六小时内的天气。英伟达的气候模拟研究主管Mike Pritchard在一篇博文中详细介绍说:“StormCast可以在3公里的小时尺度上实现这一功能。”
StormCast旨在预测所谓的中尺度天气事件。这些大气现象的覆盖面积从五公里到几百公里不等。除其他外,中尺度天气还包括山洪暴发和能够造成大面积风灾的持久风暴。普通风暴不属于中尺度事件,因为它们影响的范围要小得多。
气象学家通常使用一种名为 “对流允许模型 (CAM)”的算法来预测天气。这种算法通常在超级计算机上运行,并考虑到多达数千个大气参数来生成预测结果。英伟达表示,已经证明在某些情况下,StormCast有能力超越CAM软件。
Pritchard详细介绍说:“尽管该模型还处于起步阶段,但当它与降水雷达一起应用时,已经可以提前六小时提供预报,准确率比美国国家海洋和大气管理局(NOAA)最先进的3公里尺度CAM高出10%。”
其他公司也在研究如何利用人工智能改进天气预报。去年11月,谷歌推出了GraphCast,这是一个内部开发的神经网络,可以比传统算法更快地预测大气事件。它可以提前10天预报天气,并提供详细的温度和风速预估。
好文章,需要你的鼓励
随着AI的使用、创新和监管混乱超过认可的标准,IT领导者只能开发内部方法来减轻AI风险,依靠框架、工具和他们的同事来正确使用AI。
几年前,当澳大利亚红十字会(Australian Red Cross)这个社区服务慈善机构开始进行数字化转型的时候,发现有很多不同的系统无法协同工作。如今,经过数据梳理和发挥作用,可以满足不断变化的需求。
在此次活动中,IBM展示了最先进的IBM Quantum Heron计算机是如何以比以前更高的精度和速度执行复杂的量子算法,同时为进行高级分子模拟的新方法铺平了道路。
想象一下,一个人工智能系统不仅能阅读文本或识别图像,还能够同时读、写、看、听和创造。这其实就是多模态人工智能的精髓。这些先进的多模态人工智能系统可以同时处理和整合多种形式的数据,包括文本、图像、音频甚至视频。这就像是赋予了人工智能一整套的感官。