初期不收费,但后续的多年运行将长期保持计费。
IBM认为,如今正是将Power支持的云方案推向本地的最佳时机。
IBM Power Virtual Server Private Cloud虚拟服务器私有云于本周二低调发布,基于IBM Power虚拟服务器,且蓝色巨人打算以用户熟悉的IaaS服务形式对外租赁。
蓝色巨人对其外部虚拟服务器服务的宣传工作充满热情,并在产品手册中指出“以往依赖于本地基础设施的IBM Power Systems客户,现在能够快速、经济地将其Power IT资源扩展至外部。”手册还提到,云Power服务器与本地设备相同,因此不需要对软件或许可证做任何调整。
IBM Power虚拟服务器私有云同样继承Power设备的血统,只是设备将被部署在用户指定的位置,并由IBM将其作为托管基础设施即服务进行运营。
就是说尽管服务器以及相关网络和存储套件均部署在本地,但私有云管理工作仍然通过IBM Cloud进行。
IBM专为这项服务打造了Power服务器“pod”。小型Pod可容纳两到四台运行服务器,每台服务器配备8 TB内存,总计最多可容纳340个可用CPU核心以及438 T可用存储空间。全部套件均可安装在同一机架之内。
中型Pod最多可容纳40台服务器,其中一些能够搭载需要32 TB内存。部分Pod可提供1615个可用核心以及大约3.5 PB的存储空间。中型Pod需要分布在多台机架之上。
目前受支持的操作系统包括AIX、IBM I以及RHEL。
蓝色巨人将为客户提供一年、三年或五年期服务,但无需任何预付款,只需在后续使用过程中按资源消耗水平按需付费。计算、内存、存储及操作系统许可证均可精确计量。
IBM并不是唯一一家将云(包括硬件及全部服务内容)引入本地场景的厂商,甲骨文与亚马逊云科技已经采取了行动。微软的本地云方法也有诸多变化,其公有云Azure Stack子集可在商用硬件上运行,是旗下最接近IBM、亚马逊云科技及甲骨文设备类型的产品。
谷歌的方案则有所不同:其Anthos产品是一款针对混合运行专门调整的Kubernetes发行版,且通常运行在由企业级服务器部署组成的商用硬件之上。
IBM Power虚拟服务器私有云主要面向那些需要将敏感或受监管数据保留在本地,并希望将IT转化为运营支出的用户。IBM的竞争对手也普遍提出了同样的业务定位。
当然,蓝色巨人几十年间一直在推进这类业务,其大型机产品线就普遍基于消费用量计费。
本次新品的不同之处,主要体现在云端管理方面。
IBM的云业务并不算其强项。然而,Power系统仍然有着令人印象深刻的弹性与强大性能。但这位IT巨头自己也清楚Power架构的局限性,因此在强调其作为关键应用用例的理想选择之余,IBM也提供云x86选项,用于支撑宣传视频中所描述的“微不足道”的工作负载。
好文章,需要你的鼓励
在他看来,企业对AI的恐惧源自未知,而破解未知的钥匙,就藏在“AI平台+开源”这个看似简单的公式里。
斯坦福和魁北克研究团队首创"超新星事件数据集",通过让AI分析历史事件和科学发现来测试其"性格"。研究发现不同AI模型确实表现出独特而稳定的思维偏好:有些注重成就结果,有些关注情感关系,有些偏向综合分析。这项突破性研究为AI评估开辟了新方向,对改善人机协作和AI工具选择具有重要意义。
Pure Storage发布企业数据云(EDC),整合其现有产品组合,提供增强的数据存储可见性和基于策略的简化管理。EDC集成了Purity存储操作系统、Fusion资源管理、Pure1舰队管理和Evergreen消费模式等架构元素,提供类云存储管理环境。该方案支持声明式策略驱动管理,让客户专注业务成果而非基础设施管理。同时发布高性能闪存阵列和300TB直接闪存模块,并与Rubrik合作提供网络安全防护能力。
威斯康星大学研究团队提出"生成-筛选-排序"策略,通过结合快速筛选器和智能奖励模型,在AI代码验证中实现了11.65倍速度提升,准确率仅下降8.33%。该方法先用弱验证器移除明显错误代码,再用神经网络模型精确排序,有效解决了传统方法在速度与准确性之间的两难选择,为实用化AI编程助手铺平了道路。