随着人工智能技术的迅猛发展,企业对AI 的应用需求正在经历一场前所未有的变革。2024年,各行各业不再仅仅是AI 技术的旁观者或初学者,而是转变为需求主导的实践者,正不断在具体应用场景中寻求AI 的“最优解”。
在这个关键的转折点上,AI 技术如何塑造未来,基础设施如何适应新的技术需求,如何加快算力供给,从而为业务创造更大的价值等“疑云”,正不断被行业领袖和技术先锋们缓缓揭晓。
AI 创变应用、技术、基础架构未来范式
“反转”是澜码科技联合创始人周元剑在应用侧对于2024年AI 在场景和企业需求层面的直观感悟。“去年,我们还在向客户介绍AI 模型和应用案例,而今年,客户们已经带着具体的应用场景来到我们面前,这表明他们已经准备好将AI 应用到各种业务中。”
尽管刚刚成立不久,定位AI Agent 平台的澜码科技已经服务了以银行行业为主的诸多行业头部客户。周元剑深知,AI 不仅要赋能企业,更要赋能员工,以“人”为基础,才构筑起屹立不倒的能高楼大厦。“我们希望我们的平台未来赋能企业里面各种各样的员工,让他们每个人都能设计自己的大模型助手。”周元剑如是说。
GTC 是AI 技术侧的“风向标”。 在刚刚过去的GTC 2024 上,NVIDIA 提出了一系列引人注目的技术发布和战略计划。
推理运行成本和能耗降低多达 25 倍Blackwell 平台,让万亿参数大模型可以在每一个企业应用部署;NVLink+InfiniBand网络、Spectrum-X以太网架构的高吞吐量有效缓解网络延迟等问题; 推理加速、NIM 微服务、算力汇聚成NIM Microservice,构成了AI Foundry(AI 铸造厂)的三大支柱;为机器人准备的三类电脑——DGX、OVX、AGX,分别对应AI 、仿真,以及机器人开发平台......
NVIDIA企业级软件服务专家张旭坦言,这些新技术,呈现出NVIDIA面向“下一代工业革命”的趋势表达与能力展现。
在基础架构层面,戴尔科技集团 AI 企业技术架构师,全球CTO大使吴跃谈到三点AI 和基础架构的融合趋势。
其一,随着AI 计算需求的增长,计算模式从主要依靠CPU 向包含GPU 的异构计算转变。这种变化不仅提高了处理能力,还对数据中心的建设、供电和散热系统产生了重大影响。云技术和虚拟化在融入GPU 技术的过程中也在快速发展,预示着异构计算在企业中的重要性将持续上升。
其二,数据是构建有效AI 模型的关键。随着数据应用的增加,基础设施需适应支持数据的全生命周期,包括采集、治理、存储和保护。处理非结构化数据的需求正在增长,未来数据平台的构建和数据管理策略将成为基础设施的核心。
其三,随着AI 的发展,计算需要在接近应用地点的地方进行,以满足低延迟需求。因此,计算的地理位置正在变化。边缘计算的重要性在增加,它与AI 计算的结合是IT 领域未来的一个关注点。
架构革新:AI 时代需要怎样的基础架构?
AI 应用催生数据量日益庞大、摩尔定律陷入瓶颈,为基础架构带来了诸多新的挑战。
周元剑指出,随着参数量的增加,模型也随之更“大”,这直接导致了对计算资源的巨大需求。此时。一张显卡显然无法满足需求,而需要多卡甚至多机并行处理。然而,这种需求不仅增加了硬件成本,也对现有的技术架构提出了更高的要求。
在应用场景的实时响应层面,周元剑强调了响应速度的重要性。“在诸如客服等需要快速响应的场景中,模型的延迟时间可能达到几十秒,这对用户体验构成了极大的挑战。”他解释说,当用户期望即时回应时,延长的响应时间可能导致用户不满,从而影响企业的服务质量和客户满意度。
在张旭看来,解决生成式AI ,特别是大型AI 模型在落地过程中系统层面和监管层面的问题至关重要。他强调,NIM Microservice(推理微服务)便是那把打破桎梏的利器。
NIM Microservice 通过一系列封装和优化,可以让大模型运行在所有CUDA GPU上,这极大程度地提升了大模型的应用灵活性和部署效率。NIM Microservice 还能够在企业面对大规模数据处理需求时提供高效的服务。张旭进一步解释说:“不论是来自开源社区,还是商业化,抑或是NVIDIA自己的大模型,NIM Microservice 都能通过合适的CUDA 版本,与TensorRT 等技术协同工作,优化的内存管理,最终将企业封装、输出成一个工业级API 。”
张旭坦言,在工程化和企业级服务过程中,NIM 提供的微服务使得大型模型的需求可以通过一组或多组NIM 进行分解和解决。更是通过与戴尔等企业的战略合作,打造出更多完整的企业级解决方案,以应对各种复杂的业务需求。
正如张旭所言,在与NVIDIA 的合作下,戴尔打造出算、网、存、管于一体的AI 平台解决方案。
在计算维度,吴跃深知GPU 硬件技术与软件协同发展的必要性。“实际上,从基础设施的角度,我们希望最大化地发挥整个GPU 的效能。”吴跃指出,戴尔正在这方面进行大量工作,以确保其服务器能够充分利用GPU 的计算能力。
关于网络通信,吴跃提到了戴尔与NVIDIA 的合作,特别是基于InfiniBand 技术的高带宽传输网络,这对于大型GPU 集群的性能至关重要。“这种高带宽传输网络是我们构建AI 数据中心的关键。”他这样说。
存储方面,GPU内部数据交互、设备层面的高速通信,以及节点之间的存储通信瓶颈亟需解决。吴跃坦言:“随着HBM 显存等GPU 的高速通信计算快速技术,以及戴尔服务器机型支持的多卡间高速通信技术——NVLink、PCI-E等快速发展,可以有效提升通讯效能”
在AI 数据中心管理层面,吴跃特别强调了能耗问题和绿色数据中心概念。他直言道:“节能降耗是戴尔在助力构建成规模化AI 数据中心时,需要考量的重要一环。目前,戴尔已经拥有液冷解决方案,包括开发了冷板式液冷和浸没式液冷技术。”
解决之道:加强合作 创新技术与基础架构
在谈及算法、软件如何影响未来基础设施的问题时,周元剑首先概述了AI 应用的三个核心特点——数据密集、计算密集和智能密集。他认为,这些特性要求AI 系统能够快速处理大量数据并实现高效的计算。
周元剑指出,这些需求导致的现象是AI 任务虽然不频繁,但每个任务的价值较大。这对于基础设施提出了更高的要求,不仅需要强大的处理能力,还要有快速的数据访问能力。
周元剑预见,未来基础设施的变化将主要体现在两个方向。
第一,改进现有系统。硬件在IO、内存或显存、通信方面的大幅加速。这些改进将支持更复杂的AI 操作,满足数据密集和计算密集的需求。
第二,硬件集成的创新。未来可能出现如系统芯片(SOC)这样的更整体的硬件解决方案。这些解决方案不再区分显存与内存,从而规避现有瓶颈。这样的整合可能带来更高的数据处理效率和更快的响应速度。
为企业搭建AI 基础设施,正是NVIDIA 与戴尔合作的初衷。目前,戴尔对外提供的解决方案已经融入NVIDIA 全栈企业级服务软件“NVIE”。
张旭强调,通过“NVIE”,NVIDIA 能提供端到端的数据加速服务,以便于让AI 开发者,只需关注AI 服务的构建,减轻基础架构层面的工作。“NVIE”包括功能、产品、高度监管三个分支。
功能分支即以月为单位,保证的数据科学家能够体验到最新最快的AI 环境和模型。产品分支专注于API的稳定性和系统的整体安全,提供期稳定的平台,其生命周期为9个月,并每6个月进行一次更新。高度监管的分支可提供三年的生命周期,每两年半发布一次新版本。通过这种周期性的更新和维护,在软件发布时及时清除安全漏洞,并通过定期扫描确保系统的稳定运行。既满足了AI 开发者对新技术的尝鲜需求,又保证了AI 服务的稳定性。
针对戴尔与NVIDIA 的合作,吴跃表示,戴尔运用NVIDIA 的“能力”推出了一系列创新的产品和解决方案,旨在加强其在企业级市场的领导地位并加速AI 技术的应用。其中包括新一代GPU 加速服务器 PowerEdge XE9680 ,这款服务器支持最新一代的NVIDIA Blackwell 平台,为处理高性能计算任务提供强大的支撑。
在数据存储领域,戴尔推出了AI 存储Dell PowerScale 。Dell PowerScale 文件存储,在功能强大的NVIDIA DGX SuperPOD 基础架构中提升AI 工作负载性能。提供可改变行业游戏规则的解决方案,助力企业加速创新并在AI 计划中实现强大效率。
针对需要高性能数据库解决方案的企业,戴尔引入了基于NVIDIA GPU 的向量数据库解决方案参考架构。此架构整合了最新的RAG 技术和向量数据库,优化数据处理和分析能力。
为了支持企业级用户的工程化部署,戴尔结合了NVIDIA Enterprise、NIM 以及其他硬件基础设施平台。这些参考架构覆盖了从微调、推理到训练等不同的大模型应用场景。所有创新元素和技术细节已经在GTC2024 中展示。
写在最后
面向AI 时代的产业需求,周元剑 、张旭、吴跃分别就企业AI 应用、AI 基础设施的发展趋势进行了展望。
周元剑提出了分层实施的策略。他强调,初始阶段的AI 应聚焦于基层员工的单岗位赋能,如简化报告撰写和数据收集工作。随后,AI 将扩展到多岗位协同,帮助流程中的团队成员进行信息整合和决策支持,最终实现业务流程的自主化。
张旭表达了从硬件到软件的转型和对生态合作的期待,“我们不希望大家都重复去造轮子,希望与各方更多合作。”这表明NVIDIA 致力于通过简化技术门槛,使大模型服务更加用户友好。”他强调:NVIDIA 将坚守服务大模型客户,简化技术门槛的承诺。
吴跃直言说:“戴尔一直致力于提供一套简单易用的AI 基础架构。致力于提高计算效率和实现技术架构的端到端简化,使得AI 开发者可以将精力集中在更有价值的创新上,而不是硬件和底层工程。”
探索AI 世界,驱动未来变革!点击这里,锁定2024年4月25日下午14:00,聆听行业大咖揭秘AI 如何重新定义行业的精彩瞬间!一窥“人工智能革命如何引发一场基础架构重塑’。
好文章,需要你的鼓励
OpenAI 的 ChatGPT 爬虫存在安全漏洞,可被利用对任意网站发起分布式拒绝服务攻击。攻击者只需向 ChatGPT API 发送一个包含大量重复 URL 的请求,就能触发爬虫对目标网站进行大量访问。此外,该漏洞还可能被用于绕过限制,让爬虫回答查询。这些问题凸显了 AI 系统在安全性方面的潜在风险。
三星即将发布的Galaxy S25 Ultra旗舰手机将带来多项升级,尤其是相机方面。据泄露信息显示,新机将支持高分辨率视频拍摄、超广角微距模式、AI音频擦除等功能,并集成Google Gemini AI助手。这些升级将大幅提升用户体验,令人期待。
本周科技圈风云激荡:TikTok 面临美国最高法院裁决,或将被迫停运;Meta 在美国终止事实核查,引发争议;ChatGPT 推出全新任务功能,为用户提供智能日程管理;Beat Saber 在 Quest 平台销量突破千万,AI 电影制作技术展现惊人潜力。
AI正重塑人类生活的方方面面,从商业到国防再到社会政策。AI计算能力与全球影响力息息相关。各国和企业纷纷投资巨额资金建设数据中心,以增强AI实力。预计到2030年AI市场规模将达1.81万亿美元,掌握最佳数据和计算平台的国家将占据优势地位。AI计算力的竞争已成为21世纪全球力量的决定性较量。