走进芯时代:AI算力GPU芯片分析
尽管AI芯片种类繁多,GPU因其适应性和强大的并行计算能力,仍是AI模型训练的主流硬件。英伟达在GPU领域的技术积累和生态建设使其处于领先地位,而国内GPU厂商虽在追赶,但仍存在差距。AI应用向云、边、端全维度发展,模型小型化技术成熟,数据传输需求增加,Chiplet技术降低设计复杂度和成本。
虽然Al芯片目前看有SPU、ASIC、CPU、FPSA等几大类,但是基于几点原因我们判断GPU仍将是训练模型的主流硬件:
1、Transformer架构是最近几年的主流,该架构最大的特点之一就是能够利用分布式BPU进行并行训练,提升模型训练效率;
2、ASIC的算力与功耗虽然看似有优势,但考虑到AI算法还是处于一个不断发展演进的过程,用专用芯片部署会面临着未来算法更迭导致芯片不适配的巨大风险;
模型小型化技术逐步成熟,从训练走向推理。云、边、端全维度发展。
1、GPU方面, 在英伟达的推动下,其从最初的显卡发展到如今的高性能并行计算,海外大厂已经具备了超过20年的技术、资本、生态、人才等储备,形成了大量的核心技术专利,而且也能充分享有全球半导体产业链的支撑,这都或是目前国内厂商所缺失的。
近几年在资本的推动下,国内涌现出数十家GPU厂商,各自或都具备一定的发展基础,但整体经营时间较短,无论从技术积淀、产品料号布局、高端料号件能夹说,与国外大厂仍具备较大差距。但国产化势在必行,国内相关产业链重点环节也积极对上游芯片原厂进行扶持,国产算力芯片需要不断迭代以实现性能的向上提升,后续持续关注相关厂商料号升级、生态建设和客户突破:
2、 Al在端侧设备应用普及是大势所趋,目前,知识蒸馏、剪枝、量化等模型小型化技术在逐步成熟,Al在云、边、端全方位发展的时代已至。除了更加广泛的应用带来需求量的提升外,更复杂算法带来更大算力的需求也将从另一个维度推动市场扩容;
3、数据的高吞吐量需要大带宽的传输支持,光通信技术作为算力产业发展的支撑底座,具备长期投资价值;
4、 Chiplet技术可以突破单一芯片的性能和良率等瓶颈,降低芯片设计的复杂度和成本。


























0赞好文章,需要你的鼓励
推荐文章
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。