走进芯时代:AI算力GPU芯片分析
尽管AI芯片种类繁多,GPU因其适应性和强大的并行计算能力,仍是AI模型训练的主流硬件。英伟达在GPU领域的技术积累和生态建设使其处于领先地位,而国内GPU厂商虽在追赶,但仍存在差距。AI应用向云、边、端全维度发展,模型小型化技术成熟,数据传输需求增加,Chiplet技术降低设计复杂度和成本。
虽然Al芯片目前看有SPU、ASIC、CPU、FPSA等几大类,但是基于几点原因我们判断GPU仍将是训练模型的主流硬件:
1、Transformer架构是最近几年的主流,该架构最大的特点之一就是能够利用分布式BPU进行并行训练,提升模型训练效率;
2、ASIC的算力与功耗虽然看似有优势,但考虑到AI算法还是处于一个不断发展演进的过程,用专用芯片部署会面临着未来算法更迭导致芯片不适配的巨大风险;
模型小型化技术逐步成熟,从训练走向推理。云、边、端全维度发展。
1、GPU方面, 在英伟达的推动下,其从最初的显卡发展到如今的高性能并行计算,海外大厂已经具备了超过20年的技术、资本、生态、人才等储备,形成了大量的核心技术专利,而且也能充分享有全球半导体产业链的支撑,这都或是目前国内厂商所缺失的。
近几年在资本的推动下,国内涌现出数十家GPU厂商,各自或都具备一定的发展基础,但整体经营时间较短,无论从技术积淀、产品料号布局、高端料号件能夹说,与国外大厂仍具备较大差距。但国产化势在必行,国内相关产业链重点环节也积极对上游芯片原厂进行扶持,国产算力芯片需要不断迭代以实现性能的向上提升,后续持续关注相关厂商料号升级、生态建设和客户突破:
2、 Al在端侧设备应用普及是大势所趋,目前,知识蒸馏、剪枝、量化等模型小型化技术在逐步成熟,Al在云、边、端全方位发展的时代已至。除了更加广泛的应用带来需求量的提升外,更复杂算法带来更大算力的需求也将从另一个维度推动市场扩容;
3、数据的高吞吐量需要大带宽的传输支持,光通信技术作为算力产业发展的支撑底座,具备长期投资价值;
4、 Chiplet技术可以突破单一芯片的性能和良率等瓶颈,降低芯片设计的复杂度和成本。


























0赞好文章,需要你的鼓励
推荐文章
中国生数科技旗下AI产品Vidu发布新版本更新,推出"参考图像生成"功能,用户可上传最多7张参考图片,通过AI模型的语义理解技术将多张图像合成为高度一致的新图像。该功能支持快速编辑照片、替换物体、调整光照等操作,为摄影师、营销人员提供便捷的AI图像编辑工具,在保持视觉一致性方面与谷歌等竞品形成竞争。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
芯片初创公司SiFive推出四款专为运行人工智能模型优化的CPU核心。这些基于开源RISC-V架构的新核心增加了矢量扩展功能,能够更高效地并行处理多个数据点,显著加速AI模型运算。其中X160和X180是主打产品,具备加速卷积运算的矢量处理功能,可用于工业设备、消费电子和数据中心。公司预计客户将于2026年第二季度开始基于新核心设计生产芯片。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。