AI时代算力需求不断提升,液冷散热或将成为降低服务器功耗的有效方案。
站在全球视角,全球算力保持高速稳定增长态势。据华 为GIV预测,2030年人类有望迎来YB数据时代,全球算力规模达到56000EFLOPS。站在中国视角,据工信部,2023年我国算力总 规模达到180EFlops ,保持高位增长。算力规模大幅提升带来AI服务器需求暴增,大量高功率 CPU、GPU 芯片将带动AI服务器功耗 走高。当前数据中心制冷技术以风冷为主,考虑到机柜功率超过15kW为风冷能力天花板,而未来 AI 集群算力密度普遍超20kW/柜, 升级液冷需求迫切。
数据中心液冷技术发展现状
液冷技术影响着数据中心的设计、选址、建设、交付和运维。数据通信设备的液体冷却系统的冷却子系统可以认为是一种液体回路, 其中冷却液体与要冷却的部件做热交换。有些情况下,冷却系统的水由机架由CDU提供,也可以由服务多个机架的外部CDU提供。
数据中心液冷系统多样,冷板冷却系统为主。国内外在数 据中心液冷方面已有一定研究基础并已取得了突破性进 展,正成为变革性技术。液冷技术根据液体与IT设备接触 状态,可以分为间接液冷、直接单相液冷和直接两相液冷 三类。其中间接冷却中的冷板冷却是如今液冷数据中心采 用最广泛的散热冷却方式。
目前数据中心散热需求下,冷板冷却效果最佳。如图所 示,冷板冷却是将金属冷板与IT设备芯片贴合,液体在冷 板中流动,芯片发热时将热传导给冷板金属,液体流过冷 板时升温,利用显热将芯片热量带出,通过管道与外界冷 源进行换热,是芯片级别的冷却方式,使用最多的冷却介 质是水。冷板冷却是如今液冷数据中心采用最广泛的散热 冷却方式,使用的是液冷和风冷相结合的方法,对芯片采 用液冷,对硬盘等其他电器元件采用风冷,并非严格意义 上的单纯液冷 。与风冷最多冷却30 kW/r的机柜对比,冷 板能冷却小于45 kW/r的机柜更节能且噪音小,不需要昂 贵的水冷机组,与纯液冷对比也有一定优势。
好文章,需要你的鼓励
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。
这项由中国人民大学高瓴人工智能学院研究团队发表的研究解决了大语言模型评判中的自我偏好问题。研究提出了DBG分数,通过比较模型给自身回答的分数与黄金判断的差异来测量偏好度,有效分离了回答质量与自我偏好偏差。实验发现,预训练和后训练模型都存在自我偏好,但大模型比小模型偏好度更低;调整回答风格和使用相同数据训练不同模型可减轻偏好。研究还从注意力分析角度揭示了自我偏好的潜在机制,为提高AI评判客观性提供了重要指导。
这篇研究提出了DenseDPO,一种改进视频生成模型的新方法,通过三大创新解决了传统方法中的"静态偏好"问题:使用结构相似的视频对进行比较,采集细粒度的时序偏好标注,并利用现有视觉语言模型自动标注。实验表明,DenseDPO不仅保留了视频的动态性,还在视觉质量方面与传统方法相当,同时大大提高了数据效率。这项技术有望推动AI生成更加自然、动态的视频内容。