AI时代算力需求不断提升,液冷散热或将成为降低服务器功耗的有效方案。
站在全球视角,全球算力保持高速稳定增长态势。据华 为GIV预测,2030年人类有望迎来YB数据时代,全球算力规模达到56000EFLOPS。站在中国视角,据工信部,2023年我国算力总 规模达到180EFlops ,保持高位增长。算力规模大幅提升带来AI服务器需求暴增,大量高功率 CPU、GPU 芯片将带动AI服务器功耗 走高。当前数据中心制冷技术以风冷为主,考虑到机柜功率超过15kW为风冷能力天花板,而未来 AI 集群算力密度普遍超20kW/柜, 升级液冷需求迫切。
数据中心液冷技术发展现状
液冷技术影响着数据中心的设计、选址、建设、交付和运维。数据通信设备的液体冷却系统的冷却子系统可以认为是一种液体回路, 其中冷却液体与要冷却的部件做热交换。有些情况下,冷却系统的水由机架由CDU提供,也可以由服务多个机架的外部CDU提供。
数据中心液冷系统多样,冷板冷却系统为主。国内外在数 据中心液冷方面已有一定研究基础并已取得了突破性进 展,正成为变革性技术。液冷技术根据液体与IT设备接触 状态,可以分为间接液冷、直接单相液冷和直接两相液冷 三类。其中间接冷却中的冷板冷却是如今液冷数据中心采 用最广泛的散热冷却方式。
目前数据中心散热需求下,冷板冷却效果最佳。如图所 示,冷板冷却是将金属冷板与IT设备芯片贴合,液体在冷 板中流动,芯片发热时将热传导给冷板金属,液体流过冷 板时升温,利用显热将芯片热量带出,通过管道与外界冷 源进行换热,是芯片级别的冷却方式,使用最多的冷却介 质是水。冷板冷却是如今液冷数据中心采用最广泛的散热 冷却方式,使用的是液冷和风冷相结合的方法,对芯片采 用液冷,对硬盘等其他电器元件采用风冷,并非严格意义 上的单纯液冷 。与风冷最多冷却30 kW/r的机柜对比,冷 板能冷却小于45 kW/r的机柜更节能且噪音小,不需要昂 贵的水冷机组,与纯液冷对比也有一定优势。
好文章,需要你的鼓励
北京大学研究团队开发出基于RRAM芯片的高精度模拟矩阵计算系统,通过将低精度模拟运算与迭代优化结合,突破了模拟计算的精度瓶颈。该系统在大规模MIMO通信测试中仅需2-3次迭代就达到数字处理器性能,吞吐量和能效分别提升10倍和3-5倍,为后摩尔时代计算架构提供了新方向。
普拉大学研究团队开发的BPMN助手系统利用大语言模型技术,通过创新的JSON中间表示方法,实现了自然语言到标准BPMN流程图的自动转换。该系统不仅在生成速度上比传统XML方法快一倍,在流程编辑成功率上也有显著提升,为降低业务流程建模的技术门槛提供了有效解决方案。
谷歌宣布已将约3万个生产软件包移植到Arm架构,计划全面转换以便在自研Axion芯片和x86处理器上运行工作负载。YouTube、Gmail和BigQuery等服务已在x86和Axion Arm CPU上运行。谷歌开发了名为CogniPort的AI工具协助迁移,成功率约30%。公司声称Axion服务器相比x86实例具有65%的性价比优势和60%的能效提升。
北京大学联合团队发布开源统一视频模型UniVid,首次实现AI同时理解和生成视频。该模型采用创新的温度模态对齐技术和金字塔反思机制,在权威测试中超越现有最佳系统,视频生成质量提升2.2%,问答准确率分别提升1.0%和3.3%。这项突破为视频AI应用开辟新前景。