AI时代算力需求不断提升,液冷散热或将成为降低服务器功耗的有效方案。
站在全球视角,全球算力保持高速稳定增长态势。据华 为GIV预测,2030年人类有望迎来YB数据时代,全球算力规模达到56000EFLOPS。站在中国视角,据工信部,2023年我国算力总 规模达到180EFlops ,保持高位增长。算力规模大幅提升带来AI服务器需求暴增,大量高功率 CPU、GPU 芯片将带动AI服务器功耗 走高。当前数据中心制冷技术以风冷为主,考虑到机柜功率超过15kW为风冷能力天花板,而未来 AI 集群算力密度普遍超20kW/柜, 升级液冷需求迫切。

数据中心液冷技术发展现状
液冷技术影响着数据中心的设计、选址、建设、交付和运维。数据通信设备的液体冷却系统的冷却子系统可以认为是一种液体回路, 其中冷却液体与要冷却的部件做热交换。有些情况下,冷却系统的水由机架由CDU提供,也可以由服务多个机架的外部CDU提供。

数据中心液冷系统多样,冷板冷却系统为主。国内外在数 据中心液冷方面已有一定研究基础并已取得了突破性进 展,正成为变革性技术。液冷技术根据液体与IT设备接触 状态,可以分为间接液冷、直接单相液冷和直接两相液冷 三类。其中间接冷却中的冷板冷却是如今液冷数据中心采 用最广泛的散热冷却方式。
目前数据中心散热需求下,冷板冷却效果最佳。如图所 示,冷板冷却是将金属冷板与IT设备芯片贴合,液体在冷 板中流动,芯片发热时将热传导给冷板金属,液体流过冷 板时升温,利用显热将芯片热量带出,通过管道与外界冷 源进行换热,是芯片级别的冷却方式,使用最多的冷却介 质是水。冷板冷却是如今液冷数据中心采用最广泛的散热 冷却方式,使用的是液冷和风冷相结合的方法,对芯片采 用液冷,对硬盘等其他电器元件采用风冷,并非严格意义 上的单纯液冷 。与风冷最多冷却30 kW/r的机柜对比,冷 板能冷却小于45 kW/r的机柜更节能且噪音小,不需要昂 贵的水冷机组,与纯液冷对比也有一定优势。













好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。