AI时代算力需求不断提升,液冷散热或将成为降低服务器功耗的有效方案。
站在全球视角,全球算力保持高速稳定增长态势。据华 为GIV预测,2030年人类有望迎来YB数据时代,全球算力规模达到56000EFLOPS。站在中国视角,据工信部,2023年我国算力总 规模达到180EFlops ,保持高位增长。算力规模大幅提升带来AI服务器需求暴增,大量高功率 CPU、GPU 芯片将带动AI服务器功耗 走高。当前数据中心制冷技术以风冷为主,考虑到机柜功率超过15kW为风冷能力天花板,而未来 AI 集群算力密度普遍超20kW/柜, 升级液冷需求迫切。
数据中心液冷技术发展现状
液冷技术影响着数据中心的设计、选址、建设、交付和运维。数据通信设备的液体冷却系统的冷却子系统可以认为是一种液体回路, 其中冷却液体与要冷却的部件做热交换。有些情况下,冷却系统的水由机架由CDU提供,也可以由服务多个机架的外部CDU提供。
数据中心液冷系统多样,冷板冷却系统为主。国内外在数 据中心液冷方面已有一定研究基础并已取得了突破性进 展,正成为变革性技术。液冷技术根据液体与IT设备接触 状态,可以分为间接液冷、直接单相液冷和直接两相液冷 三类。其中间接冷却中的冷板冷却是如今液冷数据中心采 用最广泛的散热冷却方式。
目前数据中心散热需求下,冷板冷却效果最佳。如图所 示,冷板冷却是将金属冷板与IT设备芯片贴合,液体在冷 板中流动,芯片发热时将热传导给冷板金属,液体流过冷 板时升温,利用显热将芯片热量带出,通过管道与外界冷 源进行换热,是芯片级别的冷却方式,使用最多的冷却介 质是水。冷板冷却是如今液冷数据中心采用最广泛的散热 冷却方式,使用的是液冷和风冷相结合的方法,对芯片采 用液冷,对硬盘等其他电器元件采用风冷,并非严格意义 上的单纯液冷 。与风冷最多冷却30 kW/r的机柜对比,冷 板能冷却小于45 kW/r的机柜更节能且噪音小,不需要昂 贵的水冷机组,与纯液冷对比也有一定优势。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。