要说当下最困难的挑战,就是如何为计算系统采购充足的英伟达“Hopper”H100 GPU。哪怕是作为供应商的英伟达自己,也只能在有限的配额之下谨慎规划、调拨给内部使用。正因为如此,英伟达去年11月用于展示MLPerf基准测试运行能力的Eos超级计算机有半数设备被分配给了其他系统。如今的Eos虽仍是英伟达的当家招牌,但性能储备相较于峰值水平已遭腰斩。
当下的AI数据中心领域,正经历一段堪称荒谬的复杂时期。
首先是英伟达突然发布一篇博文外加一段视频,以颇为详尽且硬核的方式介绍了Eos系统——整体设备采用黑色、绿色加黄色搭配,颇有几分儿童故事书中的风格。
Eos设备早在2022年3月就已公开亮相,当时被作为Hopper GPU加速器的宣传素材,并于当年晚些时候进行了实装。随着11月在高性能LINPAKC基准测试中跑出认证成绩,Eos系统成功在2023年的Top500超级计算机榜单中名列第九。
用于数据中心训练和推理性能测试的最新MLPerf机器学习基准也在此时正式揭晓,英伟达对自家Eos同样信心满满——这是一套拥有10752张H100 GPU的满配系统,全部通过4000 Gb/秒的Quantum-2 NDR InfiniBand实现互连。
援引英伟达当时的介绍,“生成式AI领域又一颗新星伴随着众多新记录和里程碑冉冉升起——这就是英伟达Eos,一台AI超级计算机,拥有多达10752张英伟达H100 Tensor Core GPU并搭配英伟达Quantum-2 InfiniBand网络。在基准训练测试当中,Eos只需3.9分钟就能在拥有1750亿参数的GPT-3模型上完成10亿token的训练任务。”
这里透露一点背景信息:Eos系统的原始设计其实只搭载4608张H100 GPU,也就是目前英伟达实际维持的Eos配置。当初运行LINPACK测试并拿下Top500超算名次的Eos使用的正是这套配备。可短短几个月过去,MLPerf测试中这6144张H100加速器到底去哪了?
另外:2022年3月公布的Eos原始设计能够在4608张H100的FP64双精度运算下提供275千万亿次的理论峰值性能,但在LINPACK性能测试中,该系统的FP64峰值测试性能仅为188.65千万亿次,就是说只有约3160张H100 GPU被用于驱动LINPACK基准测试。为什么LINPACK测试中不要说10752张GPU满员配置,就连4608张GPU的基础配置都没能保住?这实在令人感到费解。而从MLPerf测试结果来看,在配置上齐装满圆的Eos一举带来约642千万亿次的峰值性能,持续LINPACK性能则略高于400千万亿次,按这个成绩计算Eos完全可以在11月的Top500超算榜单中挤进前五。
有意思,所以真相究竟是什么?
据我们所知,Eos系统的初始架构如下所示:
2022年3月公布的这台Eos设备建立了一套由32个DGX H100系统组成的SuperPOD,每个系统均包含8张H100 GPU,并通过NVSwitch内存结构为总计256张GPU提供共享内存空间。为了在FP64双精度运算下获得275千万亿次的峰值性能,或者在FP8四分之一精度下获得18百亿亿次的峰值性能,则需要使用大型Quantum-2 InfiniBand交换机复合体将18个DGX H100 SuperPOD互连起来。
根据我们的计算,DGX服务器内部使用了2304个NVSwitch 3 ASIC,18个SuperPOD中还各使用360个NVSwitch叶/脊交换机,即总计720个NVSwitch 3 ASIC。双层InfiniBand网络共包含500个InifniBand交换机,对应着另外500个交换机ASIC。有趣的是,这总计3524个交换机ASIC负责将4608张H100 GPU互连起来。(对于原始FP64运算,Eos设备上DGX节点中1152个至强SP主机CPU所贡献的算力几乎没有统计学意义。)当时就有文章评价称,这属于典型的网络密集型配置,跟超大规模基础设施运营商和云服务商的主流配置思路大相径庭。而且据我们所知,还没有哪家超大规模基础设施运营商和云服务商会使用NVSwitch结构建立SuperPOD——虽然这种方法性能更好,但对应的溢价实在过于夸张。
我们还联系了英伟达想了解Eos设备的参考架构,希望从细节入手探寻真相。我们不清楚Eos采用的H100拥有80 GB显存还是96 GB显存,也不清楚该系统为什么相较去年11月的MLPerf测试版本在配置上缩水了57.1%。
这里我们提出一种可能的猜测。目前一张H100 GPU的重量约为3磅(接近1.5公斤),售价则高达3万美元,折合每克22美元。截至本文发稿时,黄金的价格约为每克71美元,就是说英伟达旗舰GPU的同质量价格已经逼近黄金的三分之一。更重要的是,H100的实用价值远高于黄金。面对旺盛的市场需求与雪片般飞来的客户订单,把这6144张H100 GPU及时变现对英伟达来说无疑才是正确的选择。
好文章,需要你的鼓励
本文探讨了利用人工智能构建去中心化互联网的可能性与挑战,强调理解背后哲学思想的重要性。文章引用 Abhishek Singh 的演讲,讨论了隐私、验证、激励、编排和用户体验的难题,并介绍了 NANDA(Networked Agents and Decentralized AI)的概念,认为去中心化模式将释放数据和计算资源,推动创新,实现科技普惠。
OpenAI CEO Sam Altman 描绘了订阅式 AI 平台的愿景,计划整合 SDK、API 及“界面”,通过不断迭代打造能整合个人全生活数据的智能模型,释放巨大财富潜力。
Zerve AI Ltd. 推出一款多代理系统,将 AI 代理从代码助手升级为全流程协作者,覆盖规划、基础设施部署、构建与发布,并内置分布式计算引擎及 App Builder,加速企业级 AI 产品开发。
文章基于九国3700余位IT决策者调研数据,揭示企业在生成式AI应用过程中在预算分配、领导任命、人才培养及变革管理等方面的趋势与挑战。