作者:MIKE WHEATLEY
英伟达公司(Nvidia Corp.)今天推出了新的Nvidia RTX 2000 Ada Generation GPU,将更强大的生成式人工智能处理器打包到“紧凑型工作站”中,让用户能够在设备上运行高级AI应用程序。
RTX 2000是该公司有史以来生产的最强大的工作站图形处理单元,其性能是上一代RTX A2000 12GB的1.5倍。它旨在处理复杂的应用,如制作3D环境和完善工业设计,并将为英伟达所说的“人工智能加速的未来” 铺平道路。
该公司解释说,现代多应用程序工作流,如生成式人工智能、多显示器设置和高分辨率内容,对GPU内存提出了很高的要求。为了更好地处理这个问题,RTX 2000 Ada提供了 16 GB的板载内存,确保它可以支持更逼真的图形,逼真的光线追踪图像渲染速度比上一代芯片快三倍。
该芯片由英伟达第四代Tensor内核提供支持,其AI吞吐量是该公司旧款 RTX A2000 12GB的1.8倍,同时能效提高了两倍。宣传中还有虚拟现实工作流程的性能提高三倍等内容。
英伟达表示,RTX 2000 Ada Generation GPU可以加速可视化和结构分析工作负载,提高许多行业的设计精度。例如,使用工业PC的产品设计师和工程师将能够通过极快、逼真的渲染和AI驱动的生成式设计更快地迭代新概念。同时,内容创作者将能够以更快的速度和精度编辑高分辨率的视频和图像,利用人工智能创造更逼真的视觉效果。
此外,英伟达还希望RTX 2000 Ada Generation GPU为边缘实时数据处理提供支持,例如医疗设备和制造设备,以及零售环境中AI驱动的智能。
英伟达列出了其最新GPU平台的许多早期采用者,包括3D产品设计软件制造商达索(Dassault Systèmes SE)。达索公司的图形应用研发总监Olivier Zegdoun表示,这款新芯片对其SOLIDWORKS设计软件的用户特别有益。他表示:“它为设计师和工程师提供了卓越的性能,以加速开发具有完整模型保真度的创新产品体验,即使数据集更大。”
Rob Wolkers Design and Engineering的所有者兼高级工业设计工程师Rob Wolkers强调了该芯片可以在工业设计场景中提供更强大的计算能力。他表示:“RTX 2000 Ada Generation GPU配备了下一代架构和大型帧缓冲区,提高了日常工业设计和工程工作流程的工作效率,使我能够以全保真度处理大型数据集,并以3倍的速度生成具有更多照明和反射场景的渲染。”
英伟达表示,RTX 2000 Ada Generation GPU将与最新的RTX Enterprise Driver一起推出,后者包含了一系列旨在增强图形工作流程的功能。例如,Video TrueHDR是针对标准动态范围和高动态范围视频的一种新的色调映射功能,可为Chrome和Edge等Web浏览器中查看的内容提供更宽广的色彩范围和更高的亮度。该驱动还增加了对Video Super Resolution和TrueHDR的支持,使低质量视频能够增强并升级到HDR。
该驱动还包含了TensorRT-LLM,这是一个开源库,可优化和加速大型语言模型的推理性能,并具备通过执行间接扩展应用程序编程接口将某些任务从中央处理单元卸载到GPU的能力。
英伟达表示,RTX 200 Ada现已通过其全球分销合作伙伴供应,并将于4月集成到戴尔、惠普和联想的工作站中。
好文章,需要你的鼓励
本文探讨了AI发展的未来趋势,详细分析了六条有望实现通用人工智能(AGI)的技术路径。随着生成式AI和大语言模型面临发展瓶颈,业界开始将目光转向其他AI发展方向。这六条路径包括神经符号AI、神经形态AI、具身AI、多智能体AI、以人为中心的AI和量子AI。每种路径都有其独特优势和挑战,可能单独或组合推动AI进入下一个发展阶段,最终实现与人类智能相当的AGI系统。
约翰霍普金斯大学研究团队发现VAR模型的马尔可夫变体本质上是离散扩散模型,提出SRDD方法。通过应用扩散模型技术如分类器自由引导、令牌重采样等,SRDD相比VAR在图像质量上提升15-20%,同时具备更好的零样本性能。这项研究架起了自回归模型与扩散模型的理论桥梁,为视觉生成技术发展开启新方向。
培生公司第三季度销售增长加速,并预示年底表现更强劲,但其AI应用可能是更重要的发展。该公司虚拟学习部门销售额激增17%,学生注册人数攀升。培生运营的在线学校将AI工具嵌入课程材料中,公司表示有越来越多证据显示这些工具帮助学生取得更好成绩。公司推出了AI学习内容组合,包括AI素养模块和融合人工导师与AI学习工具的视频平台。
微软亚洲研究院推出CAD-Tokenizer技术,首次实现AI通过自然语言指令进行3D模型设计和编辑的统一处理。该技术通过专门的CAD分词器和原语级理解机制,让AI能像设计师一样理解设计逻辑,大幅提升了设计精度和效率,有望推动工业设计的民主化进程。