传感器无处不在——例如,当道路空无一人时关闭高速公路灯时可监测桥梁的健康状况,监测电信网络和电网的复杂信号。这些传感器的每一次闪烁都是一个字节的数据,经过精心记录和存储。随着过去十年数据存储成本的暴跌,我们谈论的是数字仓库中雪崩般的数据。
这些数据中的大部分都在黑暗中,没有经过分析,也看不见。这就是专家们所说的暗数据。现在,随着人工智能进入基础设施领域,这些休眠的数据即将成为人们关注的焦点。
IEEE终身高级会员Raul Colcher表示:“事实上,似乎有大量关于基础设施运营的数据可以更好地用于提高其有效性。”
人工智能因数据而蓬勃发展——数据越多越好。当涉及到训练复杂的人工智能模型时,这些多年来从无数传感器和系统中收集的暗数据可能非常有价值。
那么,揭露这些暗数据有什么大不了的?首先,它改变了基础设施运营的游戏规则。随着人工智能的介入将暗数据带入聚光灯下,我们可以期待效率的飞跃,以及设计和使用我们的基础设施的新方法,以实现数据比人更频繁移动的未来。
字节构建得更好
很多时候,暗数据没有被使用,因为它没有被正确标记,因此很难分析。一些研究表明(https://ieeexplore.ieee.org/document/9740126),使用暗数据可以大大改进在手机网络中分配资源的机器学习算法。在另一个案例中,一家石油和天然气工厂的数据科学家能够使用暗数据在不干扰运营的情况下改进工厂的数字模型。
哪里的影响最大?
分析和建模这些数据的好处是巨大而多样的。从规划到运营、维护等,基础设施的各个方面都可能发生转变。描绘更准确的模型、更好的自动化,以及对我们的系统如何真正工作的更深入理解。
挑战
然而,利用暗数据也面临着一些挑战,暗数据虽然丰富,但并不总是干净或无错误的。数据质量、偏见、数据来源和安全性等问题迫在眉睫。解决这些挑战对于充分发挥人工智能在基础设施领域的潜力至关重要。
正如IEEE会员汪齐齐所言:“数据量的激增并不保证更好的结果。过滤掉干扰或质量低劣的数据提出了重大挑战。” 中国正积极探索利用人工智能技术处理庞大的基础设施数据,以促进其城市建设和发展。
了解更多:2023年是人工智能具有里程碑意义的一年,由于生成人工智能工具的力量,广大公众对人工智能的认识越来越高。IEEE Spectrum深入报道了发展情况。由此可以查看2023年最热门人工智能故事的总结:https://spectrum.ieee.org/ai-news-2023。
好文章,需要你的鼓励
开源向量数据库供应商 Qdrant 宣布利用 GPU 计算向量索引,速度比 x86 CPU 快 10 倍。最新版本支持 AMD、Intel 和 NVIDIA GPU,可大幅提升索引构建效率,降低成本。此外还引入了严格模式、图压缩等新功能,为 AI 应用提供更好的实时性能和扩展能力。
人工智能正在改变房地产行业的运作方式。从辅助卖家定价到为物业管理者提供自动化工具,AI 正在优化各个环节的运营效率,提升客户体验。AI 能快速分析大量数据,帮助人们做出更明智的决策,同时自动化某些任务,使人们能专注于更高价值的工作。
DigitalOcean在其年度用户大会上发布了GenAI平台,旨在让生成式AI更易于企业使用。该平台提供创建自定义AI代理、集成知识库和执行高级功能调用的工具,为构建AI驱动应用提供了简单途径。DigitalOcean强调易用性,致力于让更多开发者和初创企业能够轻松接入AI技术。
国泰航空与航空运输业 IT 提供商 SITA 签署协议,通过 SITA Connect Go 产品在 51 个全球机场提升网络带宽。该合作旨在将当前网络容量提高至原来的五倍,同时保持成本效率。这将帮助国泰航空提升运营效率、实现云应用过渡,并优化乘客体验。