
传感器无处不在——例如,当道路空无一人时关闭高速公路灯时可监测桥梁的健康状况,监测电信网络和电网的复杂信号。这些传感器的每一次闪烁都是一个字节的数据,经过精心记录和存储。随着过去十年数据存储成本的暴跌,我们谈论的是数字仓库中雪崩般的数据。
这些数据中的大部分都在黑暗中,没有经过分析,也看不见。这就是专家们所说的暗数据。现在,随着人工智能进入基础设施领域,这些休眠的数据即将成为人们关注的焦点。
IEEE终身高级会员Raul Colcher表示:“事实上,似乎有大量关于基础设施运营的数据可以更好地用于提高其有效性。”
人工智能因数据而蓬勃发展——数据越多越好。当涉及到训练复杂的人工智能模型时,这些多年来从无数传感器和系统中收集的暗数据可能非常有价值。
那么,揭露这些暗数据有什么大不了的?首先,它改变了基础设施运营的游戏规则。随着人工智能的介入将暗数据带入聚光灯下,我们可以期待效率的飞跃,以及设计和使用我们的基础设施的新方法,以实现数据比人更频繁移动的未来。
字节构建得更好
很多时候,暗数据没有被使用,因为它没有被正确标记,因此很难分析。一些研究表明(https://ieeexplore.ieee.org/document/9740126),使用暗数据可以大大改进在手机网络中分配资源的机器学习算法。在另一个案例中,一家石油和天然气工厂的数据科学家能够使用暗数据在不干扰运营的情况下改进工厂的数字模型。
哪里的影响最大?
分析和建模这些数据的好处是巨大而多样的。从规划到运营、维护等,基础设施的各个方面都可能发生转变。描绘更准确的模型、更好的自动化,以及对我们的系统如何真正工作的更深入理解。
挑战
然而,利用暗数据也面临着一些挑战,暗数据虽然丰富,但并不总是干净或无错误的。数据质量、偏见、数据来源和安全性等问题迫在眉睫。解决这些挑战对于充分发挥人工智能在基础设施领域的潜力至关重要。
正如IEEE会员汪齐齐所言:“数据量的激增并不保证更好的结果。过滤掉干扰或质量低劣的数据提出了重大挑战。” 中国正积极探索利用人工智能技术处理庞大的基础设施数据,以促进其城市建设和发展。
了解更多:2023年是人工智能具有里程碑意义的一年,由于生成人工智能工具的力量,广大公众对人工智能的认识越来越高。IEEE Spectrum深入报道了发展情况。由此可以查看2023年最热门人工智能故事的总结:https://spectrum.ieee.org/ai-news-2023。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。